论文

西北干旱区绿洲—戈壁资料同化数据集的建立与分析

  • 文小航- ,
  • 吕世华 ,
  • 董文杰 ,
  • 奥银焕
展开
  • 北京师范大学 地表过程与资源生态国家重点实验室, 北京100875;2. 中国科学院寒区旱区环境与工程研究所 寒旱区陆面过程与气候变化重点实验室, 兰州730000

网络出版日期: 2014-02-28

Establishment and Analysis of Assimilation Dataset of Oasis-Gobi System over an Arid Region in Northwestern China

Expand

Online published: 2014-02-28

摘要

利用美国气象环境预报中心和美国国家大气研究中心(NCEP/NCAR)共同开发的天气研究和预报系统WRF模式3.1版本, 结合地球观测系统的中分辨率成像光谱仪EOSMODIS反演的下垫面土地利用/植被类型资料, 并同化2008年夏季金塔绿洲野外观测试验所取得的气象资料, 对绿洲系统陆—气水热交换过程进行模拟, 最终生成金塔高分辨率资料同化再分析数据集。此数据集包括黑河流域金塔绿洲2008年68月逐时水平分辨率1 km的土地利用类型、 19层风温湿压、 4层土壤温湿度以及地表植被覆盖、 辐射分量、 热通量等资料。同时, 利用金塔绿洲观测期内的地表气压、 地面气温和相对湿度实测值对该数据集进行初步验证, 并分析了绿洲—戈壁系统的“冷湿岛效应”、 平均大气环流特征和空气温湿度长期变化规律。结果表明, 绿洲和戈壁下垫面的热力差异明显, 绿洲和戈壁平均地表温度白天和夜间分别相差21℃和3℃; 10 cm土壤温度白天最大相差17℃, 并且绿洲比戈壁滞后3 h达到峰值; 戈壁相对湿度比绿洲平均约低11%; 白天绿洲的“冷岛效应”和“湿岛效应”影响高度平均可达2000 m和1500 m; 夜间绿洲的近地层500 m以下则表现出弱的“冷岛效应”; 夜间绿洲上空的平均垂直气流为上升气流, 白天出现大范围下沉气流, 平均最大下沉气流速度可达-0.3 m·s-1

本文引用格式

文小航- , 吕世华 , 董文杰 , 奥银焕 . 西北干旱区绿洲—戈壁资料同化数据集的建立与分析[J]. 高原气象, 2014 , 33(1) : 66 -79 . DOI: 10.7522/j.issn.1000-0534.2013.00073

Abstract

The water-energy exchange process and land-atmospheric interaction were simulated by Weather Research and Forecasting (WRF) model version 3.1, which developed by the National Center for Atmospheric Research. The underlying surface land use and vegetation types with MODIS data and the meteorological data which were acquired in Jinta experiment during summer in 2008 were also assimilated in the WRF model. Further, the Jinta high resolution data assimilation reanalysis dataset was produced by WRF model. This dataset includes landuse types with 1 km horizontal resolution for each hour, wind, temperature, humidity and pressure at 19 levels, soil temperature and moisture at 4 levels, vegetation fractional coverage, radiation and heat fluxes on land surface from June to August 2008 over heihe river basin in Jinta Oasis. The surface pressure, temperature and relative humility were verified by observations in this study and the  cold-wet land effects′, characteristics of mean atmospheric circulation, and long-period variation of air temperature and relative humidity were analyzed by using this dataset. The result showed that the thermal difference was obviously between oasis and Gobi, and the differences of land surface temperature in the day and night time was 21 and 3℃ in oasis and Gobi, respectively. The differences of soil temperature at 10 cm depth during daytime was 17℃ at the most, and the peek value of soil temperature in oasis occurred 3 hours later than in Gobi. The averaged relative humidity in oasis was 11% lower than that in Gobi. The ‘clod island effect’ and ‘wet island effect’ could affect the atmospheric layer up to 2000 m and 1500 m height during the day, respectively. It showed that a weak  cold island effect' appeared below 500m near surface layer at night. In the upper layer over oasis, updraft appeared during nighttime and downdraft occurred during daytime on a large scale, and the maximum vertical velocity downwards could reach to -0.3 m·s-1. This reanalysis dataset could be used in further research on the long period climatic effects and characteristics of atmospheric boundary layer over Oasis-Gobi system.

参考文献

[1]文小航, 吕世华, 孟宪红, 等. WRF模式对金塔绿洲效应的数值模拟[J]. 高原气象, 2010, 29(5): 1163-1173.
[2]韦志刚, 吕世华, 胡泽勇, 等. 夏季金塔边界层风、 温度和湿度结构特征的初步分析[J]. 高原气象, 2005, 24(6): 846-856.
[3]吕世华, 罗斯琼. 沙漠—绿洲大气边界层结构的数值模拟[J]. 高原气象, 2005, 24(4): 466-470.
[4]Wen Xiaohang, Lv Shihua, Jin Jiming. Integrating remote sensing data with WRF for improved simulations of oasis effects on local weather processes over an arid region in Northwestern China[J]. J Hydrometeor, 2012, 13: 573-587.
[5]文小航, 吕世华, 尚伦宇, 等. WRF模式对金塔绿洲-戈壁辐射收支的模拟研究[J]. 太阳能学报, 2011, 32(3): 346-353.
[6]孙淑芬. 陆面过程的物理、 生化机理和参数化模型[M]. 北京: 气象出版社, 2005: 284.
[7]苏从先, 胡隐樵. 绿洲和湖泊的冷岛效应[J]. 科学通报, 1987, 32(10): 756-758.
[8]胡隐樵, 高由禧, 王介民, 等. 黑河实验(HEIFE)的一些研究成果[J]. 高原气象, 1994, 13(3): 225-236.
[9]左洪超, 吕世华, 胡隐樵, 等. 非均匀下垫面边界层的观测和数值模拟研究(I): 冷岛效应和逆湿现象的完整物理图像[J]. 高原气象, 2004, 23(2): 155-162.
[10]左洪超, 吕世华, 胡隐樵, 等. 非均匀下垫面边界层的观测和数值模拟研究(II): 逆湿现象的数值模拟研究[J]. 高原气象, 2004, 23(2): 163-170.
[11]陈世强, 吕世华, 奥银焕, 等. 夏季金塔绿洲与沙漠次级环流近地层风场的初步分析[J]. 高原气象, 2005, 24(4): 534-539.
[12]孟宪红, 吕世华. 卫星遥感结合数值模式估算金塔绿洲非均匀地表能量通量[J]. 高原气象, 2012, 31(4): 910-919.
[13]奥银焕, 吕世华, 陈世强, 等. 夏季金塔绿洲及邻近戈壁的冷湿舌及边界层特征分析[J]. 高原气象, 2005, 24(4): 503-508.
[14]沈志宝, 邹基玲. 黑河地区沙漠和绿洲的地面辐射能收支[J]. 高原气象, 1994, 13(3): 314-322.
[15]季国良, 侯旭宏, 吕兰芝, 等. 干旱地区不同下垫面的辐射收支[J]. 太阳能学报, 2004, 25(1): 37-40.
[16]张强, 周毅. 敦煌绿洲夏季典型晴天地表辐射和能量平衡及小气候特征[J]. 植物生态学报, 2002, 26(6): 717-723.
[17]张强, 黄荣辉, 王胜, 等. 西北干旱区陆—气相互作用试验(NWC-ALIEX)及其研究进展[J]. 地球科学进展, 2005, 20(4): 427-441.
[18]Chu P C, Lu S H, Chen Y C. A numerical modeling study on desert oasis self-supporting mechanisms[J]. J Hydrol, 2005, 312(1-4): 256-276.
[19]吕世华, 尚伦宇. 金塔绿洲风场与温湿场特征的数值模拟[J]. 高原气象, 2005, 24(5): 624-628.
[20]文莉娟. 绿洲系统陆面过程及绿洲效应研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2007: 1-113.
[21]文莉娟, 吕世华, 孟宪红,等. 夏季绿洲气候效应的观测和数值模拟[J]. 气候与环境研究, 2008, 13(3): 301-308.
[22]潘林林, 陈家宜. 绿洲夜间“冷岛效应”的模拟研究[J]. 大气科学, 1997, 21(1): 40-48.[HJ*3/4]
[23]张强, 赵鸣. 干旱区绿洲与荒漠相互作用下陆面特征的数值模拟[J]. 高原气象, 1998, 17(4): 336-346.
[24]李万莉, 吕世华, 傅慎明, 等. RAMS 模式在金塔地区非均匀下垫面上的适用性研究[J]. 高原气象, 2009, 28(5): 967-977.
[25]文小航. 金塔绿洲戈壁非均匀下垫面能量平衡及其小气候效应的数值研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2011: 1-131.
[26]Drobinski P, Carlotti P, Redelsperger J L, et al. Numerical and experimental investigation of the neutral atmospheric surface layer[J]. J Atmos Sci, 2007, 64(1): 137-156.
[27]Advanced research WRF (ARW) version 3 modeling system user′s guide[Z]. http://www.mmm.ucar.edu/wrf/users/, 2009-04.
[28]Margulis S A, Wood E F, Troch P A. The terrestrial water cycle: Modeling and data assimilation across catchment scales-Introduction[J]. J Hydrometeor, 2006, 7(3): 309-311.
[29]Troch P A, Paniconi C, McLaughlin D. Catchment-scale hydrological modeling and data assimilation[J]. Adv Water Resour, 2003, 26(2): 131-135.
[30]Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bull Amer Meteor Soc, 2004, 85(3): 381-394.
[31]Zaitchik B F, Rodell M, Olivera F. Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme[J]. Water Resour Res, 2010, 46(6): 46-50.
[32]Zhang J Y, Wang W C, Wei J F. Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation[J]. J Geophys Res Atmos, 2008, 113: D17119.
[33]Jacobs C M J, Moors E J, Ter Maat H W, et al. Evaluation of European Land Data Assimilation System (ELDAS) products using in situ observations[J]. Tellus A, 2008, 60(5): 1023-1037.
[34]李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007, 17(2): 163-173.
[35]中国西部环境与生态科学数据中心. http://westdc.westgis.ac.cn/, 2011-06-01.
[36]马明国, 王雪梅, 程国栋. 基于RS与GIS方法的金塔绿洲景观动态变化分析[J]. 中国沙漠, 2003, 23(1): 53-58.
[37]ARW Version 3.1 Modeling System User′s Guide. Mesoscale & Microscale Meteorology Division National Center for Atmospheric Research April 2009[Z]. http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3.1/contents.html, 2011-04.
[38]Meng X H, Lü S H, Zhang T T, et al. Numerical simulations of the atmospheric and land conditions over the Jinta Oasis in Northwestern China with satellite-derived land surface parameters[J]. J Geophys Res, 2009, 114: 100-120.
[39]张志富. 一种用于气候模拟的分段积分法及其在荒漠化扩展敏感性试验中的应用[D]. 兰州: 兰州大学, 2008: 46-50.
[40]王少影, 张宇, 吕世华, 等. 金塔绿洲湍流资料的质量控制研究[J]. 高原气象, 2009, 28(6): 1260-1273.
[41]任芝花, 许松, 孙化南, 等. 全球地面天气报历史资料质量检查与分析[J]. 应用气象学报, 2006, 17(4): 412-419.
文章导航

/