通过介绍几种标定C波段偏振雷达差分反射率因子ZDR和水平反射率因子ZH系统误差常用方法的原理, 利用两部相同型号的可移式C波段双线偏振雷达(POLC)在云南、 安徽等地的观测数据, 对这些方法进行了检验和对比分析。结果表明, ZDR的标定方法中, 太阳法由于偏振雷达水平与垂直方向两个接收机在较弱的信号下很难保持一致性, 目前实际应用比较困难; 垂直指向法要求雷达天线必须达到90°仰角, 机械上有所制约; 仰角法要求探测到非常均匀的雨区, 在时间与空间上极难满足; 地物引起的ZDR变化, 在统计上无任何规律可循, 因此, 地物法也基本上可以排除应用于实际; 干雪的ZDR并不完全等于0 dB, 并且需要知道0℃层的高度, 0℃层以上满足信噪比(signal to noise ratio, SNR)条件的数据较少, 并且水凝物相态难以确定为干雪, 因而干雪法有着一定的局限性; 微雨滴法理论清晰\, 结论可信, 不需要专门的扫描方式, 能够从正常的体扫观测中得到大量的满足SNR、 ZH等阈值条件的数据, 提供较为准确的ZDR系统误差估计, 因此, 微雨滴法是一种利用气象目标进行ZDR系统误差估计较好的方法。进一步分析ZH标定的自约束法的结果表明, 自约束法能够大致地验证偏振雷达ZH标定是否正确, 但是, 其用于ZH标定时, 对偏振参量数据质量要求较高, 并且约束关系的系数也有待进一步验证。
Abstract: The principles of system biases calibration of horizontal reflectivity (ZH) and differential reflectivity (ZDR) on C-band dual linear polarimetric radar are introduced. Further analysis are performed by the actual data which were detected in Yunnan and Anhui Provinces with two same type mobile C-band dual polarization radars, which were both produced by Anhui Sun-Create Electronics Co, Ltd. The results suggest that, for ZDR calibration methods, sun method is difficult to actual application as the consistency between horizontal and vertical receiver are not well in the weak signal; vertical detection one need the radar antenna can be lifted to 90° elevation angle, which has some mechanical limitation; the elevation one need a very uniform rain region which is difficult to satisfy; the change of ZDR caused by ground clutter have not regularity in the statistical analysis, therefore, the clutter calibration method is also excluded from practical application; for dry snow method, the value of ZDR of dry snow do not equal 0 dB, and the 0℃ level height need to know in advance, furthermore, the data which satisfy the requirement of SNR (signal to noise ratio) are less above the height of 0℃ level, and the phase of hydrometeor is indefinable as dry snow, so there are certain limitation in dry snow method; micro-raindrop method can be explained clearly in theory, and the conclusion is convinced, which do not need special span mode, and can obtain a large number of data that satisfy the thresholds of SNR、 ZH from a scan volume, therefore, micro-raindrop method is a better one to calibrate ZDR using meteorological target. After ZDR biases corrected, the feasibility of reflectivity ZH calibration by self-consistency technique is verified. The results suggest that self-consistency method can approximately test the correctness of ZH calibration, however, while the method is used to calibrate ZH, high quality of polarization parameters are needed, and the coefficients in the self-consistency relationship need to be validated further more.
[1]Seliga T A, Bringi V N. Potential use of radar differential reflectivity measurements at orthogonal polarization for measuring precipitation[J]. J Amer Meteor, 1976, 15: 69-76.
[2]Ryzhkov V R, Giangrande S E, Melnikov V M, et al. Calibration issues of dual-polarization radar measurements[J]. J Atmos Oceanic Technol, 2005, 22: 1138-1155.
[3]Al-Khatib H H, Seliga T A, Bringi V N. Differential reflectivity and its use in the radar measurement of rainfall[J]. Ohio State University Atmos Sci Prog Rep, AS-S-106, 1979: 131.
[4]Seliga T A, Bringi V N, Al-Khatib H H. Differential reflectivity measurements in rain: First \{experiments[J].\} IEEE Trans Geosci Electron, 1979, 17: 240-244.
[5]Gorgucci E, Scarchilli G, Chandrasekar V. A procedure to calibrate multiparameter weather radar using properties of the rain medium[J]. IEEE Trans Geosci Remote Sens, 1979, 37: 269 276.
[6]Hubbert J C, Bringi V N, Brunkow D. Studies of the polarimetric covariance matrix. Part I: Calibration methodology[J]. J Atmos Oceanic Technol, 2003, 20: 696-706.
[7]Melnikov V M, Zrnic D S, Doviak R J, et al. Calibration and performance analysis of NSSL′s polarimetricWSR-88D[R]. NOAA/NSSL Rep, 2003: 77.
[8]Bringi V N, Chandrasekar V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. London: Cambridge University Press, 2001: 648.
[9]Bechini R, Baldini L, Cremonini R, et al. Differential reflectivity calibration for operational radars[J]. J Atmos Oceanic Technol, 2008, 25: 1542-1555.
[10]Zrnic D S, Melnikov V M, Carter J K. Calibrating differential reflectivity on the WSR-88D[J]. J Atmos Oceanic Technol, 2006, 23: 944-951.
[11]Gorgucci E, Scarchilli G, Chandrasekar V. Calibration of radars using polarimetric techniques[J]. IEEE Trans Geosci Remote Sens, 1992, 30: 853-858.
[12]Scarchilli G, Gorgucci E, Chandrasekar V, et al. Self-consistency of polarization diversity measurement of rainfall[J]. IEEE Trans Geosci Remote Sens, 1996, 34: 22-26.
[13]Illingworth A, Blackman T. The need to represent rain drop size spectra as normalized Gamma distributions for the interpretation of polarization radar observations[J]. J Appl Meteor, 2002, 41: 286-297.
[14]Williams C R, Gage K S, Clark W, et al. Monitoring the reflectivity calibration of a scanning radar using a profiling radar and a disdrometer[J]. J Atmos Oceanic Technol, 2005, 22: 1004-1018.
[15]肖艳姣, 刘黎平, 杨洪平. 区域雷达网同步观测对比分析[J]. 气象学报, 2007, 65(6): 919-927.
[16]刘黎平, 钱永甫, 王致君, 等. 1996. 用双线偏振雷达研究云内粒子相态及尺度的空间分布[J]. 气象学报, 54(5): 590-599.
[17]王致君, 楚荣忠. X波段双通道同时收发式多普勒偏振雷达[J]. 高原气象, 2007, 26(1): 135-140.
[18]曹俊武, 刘黎平. 双线偏振雷达判别降水粒子相态技术及其检验[J]. 高原气象, 2007, 26(1): 116-127.
[19]赵果, 楚荣忠, 张彤, 等. 偏振多普勒雷达定量测量降雨精度的改进[J]. 高原气象, 2011, 30(2): 498-507.
[20]刘黎平, 徐宝祥. 雨区衰减和雷达取样误差对713型双线偏振雷达测量精度的影响[J]. 高原气象, 1989, 8(2): 181-188.
[21]楚荣忠, 徐宝祥, 贾伟, 等. 双线偏振雷达测量精度的统计分析与降水估测[J]. 高原气象, 1995, 14(1): 47-54.
[22]曹俊武, 胡志群, 陈晓辉, 等. 影响双线偏振雷达相位探测精度的分析[J]. 高原气象, 2011, 30(3): 817-822.
[23]肖艳姣, 王斌, 陈晓辉, 等. 移动X波段双线偏振多普勒天气雷达差分相位数据质量控制[J]. 高原气象, 2012, 31(1): 223-230.
[24]Liu L P, Hu Z Q, Fang W G, et al. Calibration and data quality analysis with mobile C-band polarimetric radar[J]. Acta Meteor Sinica, 2010, 24(4): 501-509.
[25]Hu Z Q, Liu L P, Wang L R. A quality assurance procedure and evaluation of rainfall estimates for C-Band polarimetric radar[J]. Adv Atmos Sci, 2012, 29(1): 144-156, doi: 10.1007/s00376-011-0172-y.
[26]杜牧云, 刘黎平, 胡志群, 等. C波段双线偏振多普勒雷达资料质量分析[J]. 暴雨灾害, 2011, 30(4): 328-334.
[27]Pratte F, Ferraro D. Improved WSR-88D sun-source calibration software and procedures[R]. Final Engineering Report, NWS/OSF, 1995: 85.
[28]Holleman I, Huuskonen A, Gill R, et al. Operational monitoring of radar differential reflectivity using the sun[J]. J Atmos Oceanic Technol, 2010, 27: 881-887.
[29]Bringi V N, Chandrasekar V, Balakrishnan N, et al. An examination of propagation effects in rainfall on polarimetric variables at microwave frequencies[J]. J Atmos Oceanic Technol, 1990, 7: 829-840.