论文

一种利用天空辐射计反演大气总水汽量的算法研究

  • 胡志远 ,
  • 闭建荣 ,
  • 黄建平 ,
  • 史晋森 ,
  • 刘玉芝
展开
  • 兰州大学 大气科学学院/半干旱气候变化教育部重点实验室, 兰州730000

网络出版日期: 2014-02-28

An Inversion Algorithm of Columnar Water Vapor Amount Derived from Sun-Sky Radiometer

Expand

Online published: 2014-02-28

摘要

传统计算大气总水汽量是利用改进的Langley方法, 通过准确测定传感器的光谱响应函数结合辐射传输方程模拟大气中水汽透射比并反演总水汽量。而本文提出了一种根据天空辐射计940 nm通道的太阳直接辐射资料反演晴空条件下大气柱总水汽量的算法, 该算法直接根据天空辐射计的观测数据估算了描述大气中水汽透射比的参数(a和b), 而不依赖于光谱响应函数的精确测量; 反演得到的a和b值包含了观测站温度、 气压和湿度垂直廓线的季节变化等信息, 不受模式模拟误差的影响。利用2009年38月兰州大学半干旱气候与环境观测站(SACOL)天空辐射计资料, 用该算法获得了观测时期内大气总水汽量, 然后利用同期探空资料反演的水汽量验证天空辐射计反演和微波辐射仪观测的水汽量。结果表明, 这两种方法得到的水汽总量都是可靠的。天空辐射计与微波辐射仪、 CE318型太阳光度计的反演水汽量表现出较好的一致性, 拟合斜率值分别为1.03和1.64, 相关系数均>0.95, 相对误差在2.1%~11.3%范围内。该算法可广泛应用于东亚地区天空辐射计网(SKYNET)对总水汽量的反演。

本文引用格式

胡志远 , 闭建荣 , 黄建平 , 史晋森 , 刘玉芝 . 一种利用天空辐射计反演大气总水汽量的算法研究[J]. 高原气象, 2014 , 33(1) : 232 -240 . DOI: 10.7522/j.issn.1000-0534.2012.00184

Abstract

An inversion algorithm was presented, which can retrieve the atmospheric water vapor content from direct solar irradiance measurements of sky-radiometer at 940 nm under clear-sky conditions. For the traditional method, the atmospheric transmissivity and total columnar water vapor content are generally calculated by radiative transfer model with accurate spectral response function of sensor through a modified Langley plot method. The constants of a and b were calculated directly by using combination of this method and measurements from sky radiometer. The constants can describe water vapor transmissivity and  not dependent on the accurate spectral response function. Meanwhile, the constants (a and b) include the seasonal variations of vertical profiles of air temperature, pressure, and moisture over observation site and may reduce the error of water vapor content retrieved from the traditional method. This method is preliminarily applied to the sky-radiometer data collected at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) from March to August 2009. And the water vapor content during this period was retrieved. Firstly, compared the results obtained from sky-radiometer and microwave radiometer with the simultaneously radiosonde, and the validations show that the results from different methods are both reliable. Secondly, the results derived from sky-radiometer agreed well with microwave radiometer and sun photometer. The fitting slope values are 1.03 and 1.64, respectively. While the correlation coefficients are all greater than 0.95 with the relative error ranging from 2.1% to 11.3%. This method can be widely used to compute the water vapor content measured by sky-radiometer in SKYNET over East Asia.

参考文献

[1]黄建平, 何敏, 阎虹如, 等. 利用地基微波辐射仪反演兰州地区液态云水路径和可降水量的初步研究[J]. 大气科学,2010, 34(3): 548-558.
[2]胡秀清, 张玉香, 黄意玢, 等. 利用太阳辐射计940 nm通道反演大气柱水汽总量[J]. 气象科技, 2001, 29(3): 12-17.
[3]周宁, 刘敏. 太阳光度计反演大气水汽总量的方法与结果对比分析[J]. 遥感学报, 2011, 15(3): 568-577.
[4]梁宏, 刘晶淼, 章建成, 等. 青藏高原大气总水汽量的反演研究[J]. 高原气象, 2006, 25(6): 1055-1063.
[5]梁宏, 刘晶淼, 陈跃. 地基GPS遥感的祁连山区夏季可降水量日变化特征及成因分析[J]. 高原气象, 2010, 29(3): 726-736.
[6]宾振, 吴瑶, 邱璐, 等. 江西地基GPS遥感大气可降水量变化特征及精度[J]. 高原气象, 2013, 32(5): 1503-1509, doi: 10.7522/j.issn.1000-0534.2012.00140.
[7]邓佳, 李国平. 引入地基GPS可降水量资料对一次西南涡暴雨水汽场的初步分析[J]. 高原气象, 2012, 31(2): 400-408.
[8]李国翠, 李国平, 陈小雷. 强降雪天气中GPS可降水量与地面空气湿度的综合分析[J]. 高原气象, 2011, 30(6): 1626-1632.
[9]Thome K J , Herman B M, Reagan J A. Determination of precipitable water from solar transmission[J]. J Appl Meteor, 1992, 31(2): 157-165.
[10]Reagan J , Thome K J, Herman B M. A simple instrument and technique for measuring columnar water vapor near-IR differential solar transmission measurements[J]. Geoscience and Remote Sensing, 1992, 30(4): 825-831.
[11]张文煜, 高润祥, 郭军, 等. 利用太阳光度计反演大气柱水汽总量方法研究[J]. 高原气象, 2006, 25(6): 1107-1110.
[12]Campanelli M, Lupi A, Nakajima T, et al. Summertime columnar content of atmospheric water vapor from ground-based Sun-sky radiometer measurements through a new in situ procedure [J]. [HJ*3/4]J Geophys Res, 2010, 115(D19): 304-318.
[13]Huang J P, Zhang W, Zuo J, et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Adv Atmos Sci, 2008, 25(6): 906-921.
[14]高中明, 闭建荣, 黄建平. 基于AERONET和SKYNET网观测的中国北方地区气溶胶光学特征分析[J]. 高原气象, 2013, 32(5): 1293-1307, doi:10.7522/j.issn.1000-0534.2012.00116.
[15]Bruegge C J, Conel J E, Green R O, et al. Water vapor column bundance retrievals during fife[J]. J Geophys Res, 1992, 97(D17): 18759-18768.
[16]Halthore R N, Markham B L, Deering D W. Atmospheric correction and calibration during KUREX-91[J]. Proceedings of the 12th Annual International Geoscience and Remote Sensing Symposium, 1992, 2: 1278-1280.
[17]Kasten F, Young A T. Revised optical air mass tables and approximation formula[J]. Appl Opt, 1989, 28 (22): 4735-4738.
[18]Fritz K. New table and approximation formula for the relative optical air mass[J]. Theor Appl Climatol, 1965, 14(2): 206-223.
[19]Dutton E G, Reddy P, Ryan S, et al. Features and effects of aerosol optical depth observed at Mauna Loa Hawaii: 1982-1992[J]. J Geophys Res, 1994, 99(D4): 8295-8306.
[20]Campanelli M, Estellés V, Tomasi C, et al. Application of the SKYRAD improved Langley plot method for the in situ calibration of CIMEL sun-sky photometers[J]. Appl Opt, 2007, 46(14): 2688-2702.
[21]Halthore R N, Eck T F, Holben B N , et al. Sun photometric measurements of atmospheric water vapor column abundance in the 940 nm band[J]. J Geophys Res, 1997, 102 (D4): 4343-4352.
[22]Schmid B, Michalsky J J, Slater D W, et al. Comparison of columnar water-vapor measurements from solar transmittance Methods[J]. Appl Opt, 2001, 40(12): 1886-1896.
[23]Smirnov A, Holben B N, Eck T F, et al. Cloud screening and quality control algorithms for the AERONET data base[J]. Remote Sens Environ, 2000, 73(3): 337-349.
[24]Khatri P, Takamura T. An algorithm to screen cloud-affected data for sky radiometer data analysis[J]. J Meteor Soc Japan, 2009, 87(1): 189-204.
[25]Bi J, Huang J, Fu Q, Ge J, et al. Field measurement of clear-sky solar irradiance in Badain Jaran Desert of Northwestern China[J]. J Quan Spectro Rad Transfer, 2013, doi:10.1016/j.jqsrt.2012.07.025. (In press)
文章导航

/