利用地面、 高空气象观测资料、 NCEP再分析资料等对冷锋、 蒙古气旋、 高压底部倒槽型3类天气过程的大尺度环流、 动力和热力结构特征进行了对比分析。结果表明, 从大尺度环流特征来看, 冷锋型、 蒙古气旋型均在高纬地区形成尺度较大的槽涡, 槽涡底部出现低槽分离并向南发展, 在中纬度诱发地面冷锋及蒙古气旋, 其差异在于蒙古气旋过程中往往在中纬度对流层中低层形成切断低涡; 蒙古冷高压底部倒槽型过程中, 中高纬度为脊前西北气流, 中纬度蒙古冷高压与向北发展的倒槽在中纬度相遇形成准静止锋, 并在其南侧诱发沙尘暴。从动力、 热力结构来看, 冷锋型、 蒙古气旋型在对流层中低层均呈现典型的斜压结构, 冷锋型过程锋区异常陡立, 700 hPa以下近于垂直, 上升运动呈倾斜形态, 并在对流层中低层形成高值中心; 蒙古气旋型过程中, 气旋区形成8~10个纬距上升气柱, 贯穿整个对流层; 蒙古冷高压底部倒槽型过程中, 沿经向700 hPa以上形成南北风的明显交汇, 而在其下方形成南侧沙尘区上升、 北侧高压区下沉的垂直正环流。
The cold front, Mongolia cyclone and surface inverted trough at bottom of Mongolia cold high types are the main weather systems inducing duststorm processes in North China. The characteristics of circulation and dynamic structure were comparative analysed by using observational data. The results show that the cold front type and the Mongolia cyclone type processes formed the planetary-scale trough (low) in the high-latitude area. Its separated low developed southwards. It induced the development of cold front (or Mongolia cyclone). Their difference was a cut-off vortex formed in the mid-lower troposphere in the Mongolia cyclone type process. On the surface inverted trough at bottom of Mongolia high process, the northwest wind stream was dominant in the mid-high latitude area. The Mongolia cold high moved southwards and encountered the northwards developed inverted trough and induced a quasi-stationary front formed there. The duststorm appeared in south of the quasi-stationary front. In both of the cold front and Mongolia cyclone processes, a typical baroclinic structure formed in the mid-lower troposphere. In the cold front process, the cold front zone was nearly perpendicular to the surface below 700 hPa. A slope ascending air stream appeared and formed a center in the mid-lower troposphere. In the Mongolia cyclone process, an perpendicular ascending air stream column formed at the cyclone area and spread to 8~10 latitudes horizontally and to the whole troposphere vertically with the positive vorticity. In the inverted trough process, along the meridional direction an evident intersection area between the southern and northern wind appeared above 700 hPa. Below it, a positive circulation formed with its ascending branch locating in the duststorm area while its down sinking branch appearing in the cold high area.
[1]岳平, 牛生杰, 张强, 等. 民勤一次沙尘暴的观测分析[J]. 高原气象, 2008, 27(2): 401-407.
[2]陈楠, 陈晓光, 赵光平, 等. 宁夏不同强度沙尘暴环流差异特征的对比分析[J]. 高原气象, 2006, 25(4): 680-686.
[3]王可丽, 江灏, 吴虹, 等. 2001年春季中国北方沙尘暴的环流动力结构分析[J]. 高原气象, 2002, 21(3): 303-308.
[4]郑新江, 徐建芬, 罗敬宁, 等. 1998年4月14~15日强沙尘暴过程分析[J]. 高原气象, 2001, 20 (2): 180-185.
[5]Brazel A J, Nicking W C. The relationship of weather types to dust storm generation in Arizona [J]. J Climatol, 1986, 6(3): 255-275.
[6]王式功. 我国西北地区沙尘暴时空分布及成因分析[C]//中国科协技术年会论文集. 北京: 中国科协出版社, 1995: 1-50.
[7]Pauley P M, Baker N L, Barker E H. An observational study of the ‘interstate 5’ dust storm case[J]. Bull Amer Meteor Soc, 1996, 77: 693-719.
[8]刘景涛, 钱正安, 姜学恭, 等. 中国北方特强沙尘暴的天气系统分型研究[J]. 高原气象, 2004, 23 (4): 540-547.
[9]姜学恭, 沈建国, 刘景涛, 等. 导致一例强沙尘暴的若干天气因素的观测和模拟研究[J]. 气象学报, 2003, 61(5): 606-620.
[10]姜学恭, 沈建国. 内蒙古两类持续型沙尘暴的天气特征[J]. 气候与环境研究, 2006, 11(6): 702-712.
[11]许东蓓, 任余龙, 李文莉, 等. \!4.29\"中国西北强沙尘暴数值模拟及螺旋度分析[J]. 高原气象, 2011, 30 (1): 115-124.
[12]云静波, 姜学恭, 孟雪峰, 等. 冷锋型和蒙古气旋型沙尘暴过程若干统计特征的对比分析[J]. 高原气象, 2013, 32(2): 423-434, doi: 10.7522/j.issn.1000-0534.2012.00041.