Backscattering characteristics of hexagonal ice crystals with equivalent radius in the range of 0.8 mm with different temperatures, orientations and aspect ratioes at 94 GHz horizontally polarized wave were studied by using discrete dipole approximation (DDA) method, the variations of radar reflectivity factor (Ze) with median diameter (Dm) of particles size distribution (PSD) and ice water content (IWC) were also discussed. The result shows that: The temperature impacts slightly on backscattering efficiency (Qb) and the sensitivity of Qb to orientation depends size and shapes of ice crystals. At vertical radar wave, Qb with horizontal orientation is larger than that with random orientation for equivalent radius Re <0.8 mm of ice crystals, the more departing from spheres for ice crystals morphology, the more difference between them, and the more Qb at the same orientation. At the same IWC, the range of impact of orientation, types of ice crystals and shape parameter of PSD on Ze are related to Dm of PSD. For vertically pointing radar, treating hexagonal ice crystals as equivolume spheres should underestimate Ze for greater particles (0.4 mm<0.8 mm).
[1]Stephens, G L, Tsay S C, Stackhouse P W, et al. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback[J]. J Atmos Sci, 1990, 47: 1742-1752.
[2]Lhermitter R M. Centimeter&millmeter wavelength radars in meteorology[D]. Florida: Lhermitter Publications, 2002: 191-192, 391-401.
[3]Krofli R A, Kelly R D. Meteorological research applications mm-wave radar[J]. Meteor Atmos Phys, 1996, 59: 105-121.
[4]黄毅梅, 周毓荃. 95GHz云雷达对一次冷锋云系结构的观测分析[J]. 高原气象, 2012, 31(4): 1129-1138.
[5]孙晓光. 毫米波测云雷达数据处理及航空气象保障应用研究[D]. 南京: 解放军理工大学, 2011: 24-35.
[6]张合勇, 赵卫疆, 任德明, 等. 球形粒子Mie散射参量的Matlab改进算法[J]. 光散射学报, 2008, 20(2): 102-110.
[7]Hong G. Radar backscattering properties of nonspherical ice crystals at 94 GHz[J]. J Geophys Res, 2007, 113: D22203-D008839.
[8]Matrosov S Y, Heymsfield A J. Estimating ice content and extinction in precipitating cloud systems from CloudSat radar measurements[J]. J Geophys Res, 2008, 113: D00A05, doi:10.1029/2007JD009633.
[9]Hogan R, Tian L, Brown P C, et al. Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation[J]. J Appl Meteor Climatol, 2012, 51: 655-671.
[10]Tyynel, J, Leinonen J, Moisseev D, et al. Radar backscattering from snowflakes: Comparison of Fractal, Aggregate, and Soft Spheroid Models[J]. J Atmos Ocean Technol, 2011, 28:1366-1372.
[11]胡方超, 王振会, 陈钟荣. 小旋转椭球粒子群轴向呈正态分布时的散射特性[J]. 高原气象, 2005, 24(6): 948-955.
[12]张培昌, 刘传才. 旋转椭球雨滴群的雷达气象方程及测雨订正[J]. 南京气象学院学报, 1998, 21(3): 307-312.
[13]Leinonen J, Kneifel S, Moisseev D, et al. Evidence of nonspherical behavior in millimeter-wavelength radar observations of snowfall[J]. J Geophys Res, 2012, 117(10): D18205, doi:10.1029/2012JD017680.
[14]Liu G S. A database of microwave single-scattering properties for nonspherical ice partocles[J]. American Meteorological Society, 2008, doi:10.1175/2008BAMS2486.1.
[15]Kim M J, Weinman J A, Sun W. Geoscience and remote sensing symposium[C]. IGARSS '04 Proceedings, IEEE International, 2004, 5: 3555- 3558.
[16]Lee U K, Yang P, Mishchenko M I, et al. Use of circular cylinders as surrogates for hexagonal pristine ice crystals in scattering calculations at infrared wavelengths[J]. Optical Society of America, 2003, 42(15): 2653-2662.
[17]Yang P, Gao B C, Baum B A, et al. Radiative properties of cirrus clouds in the infrared (8~13 μm) spectral region[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2001, 70: 473-504.
[18]Zhang Z B. Computation of the scattering properties of nonspherical ice crystals[D]. Texas: Texas A&M University, 2004.
[19]Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. J Opt Soc Am A, 1994, 11: 1491-1499.
[20]许小永, 王振会, 王庆安, 等. 利用实验资料检验扁椭球形雨滴和冰粒后向散射DDA算法[J]. 高原气象, 2001, 20(1): 31-36.
[21]Liu C L, Illingworth A J. Error analysis of backscatter from discrete dipole approximation for different ice particle shapes[J]. Atmos Res, 1997, 44: 231-241.
[22]郭丽君, 王振会, 董慧杰, 等. 旋转扁椭球水滴散射特性的快速算式研究[J]. 高原气象, 2012, 31(4): 1081-1090.
[23]Draine B T, Flatau P J. User Guide for the Discrete Dipole Approximation Code DDSCAT 7.1[Z]. http://arxiv.org/abs/1002.1505, 2010.
[24]Matrosov S Y, Heymsfield A J, Wang Z. Dual-frequency radar ratio of nonspherical atmospheric hydrometeors[J]. Geophys Res Let, 2005, 32: L13816, doi:10.1029/2005GL023210.
[25]张培昌, 杜秉玉, 戴铁丕. 雷达气象学[M]. 北京:气象出版社, 2001: 11, 15, 27.
[26]Lemke H, Quante M, Danne O, et al. Backscattering of radar waves by non-spherical atmospheric ice crystals: an application of the discrete dipole approximation[C]. In 3\+\{rd\} Workshop on Electromagnetic and Light Scattering: Theory and Application, Bremen Germany, 1998: 16-17.
[27]Mtzler C. Microwave dielectric properties of ice, I: Thermal microwave radiation-applications for remote sensing[M]. Stevenage: Institution of Engineering and Technology, 2006: 455-462.
[28]Baum B A, Heymsfield A J, Yang P, et al. Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models[J]. J Appl Meteor, 2005, 44: 1885-1895.
[29]Atlas D, Matrosov S Y, Heymsfield A J, et al. Radar and radiation properties of ice clouds[J]. J Appl Meteor, 1995, 34: 2329-2345. doi:10.1175/1520-0450(1995)034<2329:RARPOI>2.0.CO;2.
[30]Evans K F, Stephens G L. Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part I: Single scattering properties[J]. J Atmos Sci, 1995, 52: 2041-2057.