[1]Marshall T C, Winn W P. Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers[J]. J Geophys Res: Oceans (1978-2012), 1982, 87(C9): 7141-7157.
[2]Helsdon J H, Wu G, Farley R D. An intracloud lightning parameterization scheme for a storm electrification model[J]. J Geophys Res: Atmos(1984-2012), 1992, 97(D5): 5865-5884.
[3]Ziegler C L, MacGorman D R. Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm[J]. J Atmos Sci, 1994, 51(6): 833-851.
[4]张廷龙, 杨静, 楚荣忠, 等. 平凉一次雷暴云内的降水粒子分布及其电学特征的探讨[J]. 高原气象, 2012, 31(4): 1091-1099.
[5]王芳, 肖稳安, 雷恒池, 等. 吉林地区一次雷暴云个例电和云微物理特征的模拟分析[J]. 高原气象, 2009, 28(2): 385-394.
[6]赵鹏国, 周筠珺, 邓德文, 等. 雷暴微物理过程对电活动影响的数值模拟研究[J]. 高原气象, 2013, 32(3): 884-893, doi:10.7522/j.issn.1000-0534.2012.00082.
[7]郭凤霞, 孙京. 雷暴云起电机制及其数值模拟的回顾与进展[J]. 高原气象, 2012, 31(3): 862-874.
[8]王宁宁, 谭涌波, 师正, 等. 耦合气溶胶模块的雷暴云起电模式[J]. 高原气象, 2013, 32(2): 541-548, doi:10.7522/j.issn.1000-0534.2012.00051.
[9]吴学珂, 袁铁, 刘冬霞, 等. 山东半岛一次强飑线过程地闪与雷达回波关系的研究[J]. 高原气象, 2013, 32(2): 530-540, doi:10.7522/j.issn.1000-0534.2012.00050.
[10]Takahashi T. Determination of lightning origins in a thunderstorm model[J]. J Meteor Soc Japan, 1987, 65(5): 777-794.
[11]Rawlins F. A numerical study of thunderstorm electrification using a three dimensional model incorporating the ice phase[J]. Quart J Roy Meteor Soc, 1982, 108(458): 779-800.
[12]Kasemir H W. A contribution to the electrostatic theory of a lightning discharge[J]. J Geophy Res, 1960, 65(7): 1873-1878.
[13]MacGorman D R, Straka J M, Ziegler C L. A lightning parameterization for numerical cloud models[J]. J Appl Meteor, 2001, 40(3): 459-478.
[14]Mansell E R, MacGorman D R, Ziegler C L, et al. Simulated three-dimensional branched lightning in a numerical thunderstorm model[J]. J Geophys Res, 2002, 107(D9): 4075.
[15]Wiesmann H J, Zeller H R. A fractal model of dielectric breakdown and prebreakdown in solid dielectrics[J]. J Appl Phys, 1986, 60(5): 1770-1773.
[16]Tan Y, Tao S, Zhu B. Fine-resolution simulation of the channel structures and propagation features of intracloud lightning[J]. Geophys Res Lett, 2006, 33(9): L09809, doi:10.1029/2005GL025523.
[17]Barthe C, Molinié G, Pinty J P. Description and first results of an explicit electrical scheme in a 3D cloud resolving model[J]. Atmos Res, 2005, 76(1): 95-113.
[18]Lang T J, Miller L J, Weisman M, et al. The severe thunderstorm electrification and precipitation study[J]. Bull Ameri Meteor Soc, 2004, 85(8): 1107-1125.
[19]Weisman M L, Klemp J B. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy[J]. Mon Wea Rev, 1982, 110(6): 504-520.
[20]孔凡铀, 黄美元, 徐华英. 对流云中冰相过程的三维数值模拟I. 模式建立及冷云参数化[J]. 大气科学, 1990, 14 (4): 441-453.
[21]孙安平, 言穆弘, 张义军, 等. 三维强风暴动力-电耦合数值模拟研究Ⅰ: 模式及其电过程参数化方案[J]. 气象学报, 2002, 60(6): 722-731.
[22]Hager W W. A discrete model for the lightning discharge[J]. J Computational Physics, 1998, 144(1): 137-150.
[23]Solomon R, Baker M. Lightning flash rate and type in convective storms[J]. J Geophys Res: Atmos (1984-2012), 1998, 103(D12): 14041-14057.
[24]Marshall T C, McCarthy M P, Rust W D. Electric field magnitudes and lightning initiation in thunderstorms[J]. J Geophys Res: Atmos (1984-2012), 1995, 100(D4): 7097-7103.
[25]Saunders C P R, Keith W D, Mitzeva R P. The effect of liquid water on thunderstorm charging[J]. J Geophys Research: Atmos (1984-2012), 1991, 96(D6): 11007-11017.
[26]张义军, Paul R K, 刘欣生, 等. 闪电放电通道的三维结构特征[J]. 高原气象, 2003, 22(3): 217-220.
[27]张义军, Krehbiel P R, 刘欣生. 雷暴中的反极性放电和电荷结构[J] .科学通报, 2002, 47(15): 1192-1195.
[28]Qie X, Zhang T, Zhang G, et al. Electrical characteristics of thunderstorms in different plateau regions of China[J]. Atmos Res, 2009, 91(2): 244-249.
[29]Cui H, Qie X, Zhang Q, et al. Intracloud discharge and the correlated basic charge structure of a thunderstorm in Zhongchuan, a Chinese Inland Plateau region[J]. Atmos Res, 2009, 91(2): 425-429.
[30]Qie X, Zhang T, Chen C, et al. The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau[J]. Geophys Res Lett, 2005, 32(5): L05814, doi:10.1029/2004GL022162.
[31]Williams E R. The tripole structure of thunderstorms[J]. J Geophys Res: Atmos (1984-2012), 1989, 94(D11): 13151-13167.
[32]Wiens K C, Rutledge S A, Tessendorf S A. The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure[J]. J Atmos Sci, 2005, 62(12): 4151-4177.
[33]Tessendorf S A, Rutledge S A, Wiens K C. Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS[J]. Mon Wea Rev, 2007, 135(11): 3682-3706.
[34]Mansell E R, Ziegler C L, Bruning E C. Simulated electrification of a small thunderstorm with two-moment bulk microphysics[J]. J Atmos Sci, 2010, 67(1): 171-194.
[35]Coleman L M, Marshall T C, Stolzenburg M, et al. Effects of charge and electrostatic potential on lightning propagation[J]. J Geophys Res: Atmos(1984-2012), 2003, 108(D9): 4298.
[36]Tsonis A A. A fractal study of dielectric breakdown in the atmosphere[M]. Non-Linear Variability in Geophysics. Springer Netherlands, 1990: 167-174.
[37]Mackerras D, Darveniza M, Orville R E, et al. Global lightning: Total, cloud and ground flash estimates[J]. J Geophys Res: Atmos (1984-2012), 1998, 103(D16): 19791-19809.
[38]Boccippio D J, Cummins K L, Christian H J, et al. Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental United States[J]. Mon Wea Rev, 2001, 129(1): 108-122.