Analysis of Thermal-Moisture Conditions of Active Layer and Energy-Water Balance of Land-Atmosphere System in Tanggula Area

  • Linmao GUO ,
  • Juan CHANG ,
  • Jian ZHOU ,
  • Hongliang XU
Expand
  • <sup>1.</sup>College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu, China;<sup>2.</sup>State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

Received date: 2019-06-17

  Online published: 2020-04-28

Abstract

The thermal-moisture conditions of the active layer and the energy-water exchange between land-atmosphere system directly affect the ecological environment, hydrological process and the stability of the permafrost in cold regions.The soil temperature and moisture contents within the active layer at Tanggula station in 2007 were simulated by SHAW model.In terms of soil temperature, the Nash efficiency coefficient (NSE) is greater than 0.93, and the average value of the NSE between simulated and measured soil moisture is 0.69, indicating that the SHAW model can perfectly simulate the thermal-moisture dynamics within the active layer of permafrost regions.Based on the output of SHAW model, the variation characteristics of water dynamics and surface energy budget during the process of soil freezing and thawing in the active layer of Tanggula station were analyzed and discussed.Results showed that: (1) During the freezing and thawing process of the active layer, the soil moisture freezing and thawing response time gradually lagged with the increase of soil depth, and the water migration flux decreased with soil depth, and during the freezing period, the soil moisture has a characteristic of two-way convergence to the surface and deep layers; (2) Under the combined influence of the monsoon activities and the freezing-thawing process in the active layer, the surface energy budget showed obvious seasonal variation characteristics.The effect of vegetation on soil evapotranspiration in permafrost regions was investigated by changing the leaf area index in the vegetation input parameters of the SHAW model.Results showed that there was a positive correlation between vegetation transpiration, soil evaporation and total evapotranspiration and leaf area index of vegetation, while shallow soil moisture content (at 20 cm) showed a negative correlation when leaf area index varied from -100% (bare soil) to 100%, the total evapotranspiration varied from -5% to 13%.

Cite this article

Linmao GUO , Juan CHANG , Jian ZHOU , Hongliang XU . Analysis of Thermal-Moisture Conditions of Active Layer and Energy-Water Balance of Land-Atmosphere System in Tanggula Area[J]. Plateau Meteorology, 2020 , 39(2) : 254 -265 . DOI: 10.7522/j.issn.1000-0534.2019.00088

References

[1]Eugster W, Rouse W R, Pielke R A, al et, 2000.Land-atmosphere energy exchange in Arctic tundra and boreal forest: Available data and feedbacks to climate[J].Global Change Biology, 6: 84-115.
[2]Flerchinger G N, Hanson C L, Wight J R, 1996.Modeling evapotranspiration and surface energy budgets across a watershed[J].Water Resources Research, 32(8): 2539-2548.
[3]Flerchinger G N, Pierson F B, 1991.Modeling plant canopy effects on variability of soil temperature and water[J].Agricultural & Forest Meteorology, 56(3/4): 227-246.
[4]Flerchinger G N, Saxton K E, 1989.Simultaneous heat and water model of a freezing snow-residue-soil system I.Theory and development[J].Transactions of the ASAE, 32(2): 565-0571.
[5]Gu L, Yao J, Hu Z, al et, 2015.Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau[J].Atmospheric Research, 153: 553-564.
[6]Gu S, Tang Y, Cui X, al et, 2005.Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai-Tibetan Plateau[J].Agricultural and Forest Meteorology, 129(3): 175-185.
[7]Kurylyk B L, Macquarrie K T B, Mckenzie J M, 2014.Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools[J].Earth-Science Reviews, 138: 313-334.
[8]Li G, Duan T, Haginoya S, al et, 2001.Estimates of the bulk transfer coefficients and surface fluxes over the Tibetan Plateau using AWS data[J].Journal of the Meteorological Society of Japan.Ser.II, 79(2): 625-635.
[9]Ma N, Zhang Y, Guo Y, al et, 2015.Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe[J].Journal of Hydrology, 529: 980-992.
[10]Qiu J, 2008.China: The third pole[J].Nature, 454(7203): 393-396.
[11]Ran Y H, Li X, Cheng G D, al et, 2012.Distribution of permafrost in China: An overview of existing permafrost maps[J].Permafrost & Periglacial Processes, 23(4): 322-333.
[12]Shang L, Yu Z, Lü S, al et, 2015.Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau[J].Science Bulletin, 60(4): 435-446.
[13]Sitch S S B, Prentice I C, Arneth A, al et, 2010.Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J].Global Change Biology, 9(2): 161-185.
[14]Wang B, Fan Z, 1999.Choice of South Asian summer monsoon indices[J].Bulletin of the American Meteorological Society, 80(4): 629-638.
[15]Wen Z, Niu F, Yu Q, al et, 2014.The role of rainfall in the thermal-moisture dynamics of the active layer at Beiluhe of Qinghai-Tibetan plateau[J].Environmental Earth Sciences, 71(3): 1195-1204.
[16]Yang M, Nelson F E, Shiklomanov N I, al et, 2010.Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research[J].Earth Science Reviews, 103(1): 31-44.
[17]Yao J, Zhao L, Gu L, al et, 2011.The surface energy budget in the permafrost region of the Tibetan Plateau[J].Atmospheric Research, 102(4): 394-407.
[18]Zhang Y, Ohata T, Zhou J, al et, 2011.Modeling plant canopy effects on annual variability of evapotranspiration and heat fluxes for a semi-arid grassland on the southern periphery of the Eurasian cryosphere in Mongolia[J].Hydrological Processes, 25(8): 1201-1211.
[19]Zou D, Zhao L, Sheng Y, 2017.A new map of permafrost distribution on the Tibetan Plateau[J].The Cryosphere, 11(6): 2527-2542.
[20]常姝婷, 刘玉芝, 华珊, 等, 2019.全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J].高原气象, 38(2): 227-236.DOI: 10.7522/j.issn.1000-0534.2018.00080.
[21]谷星月, 马耀明, 马伟强, 等, 2018.青藏高原地表辐射通量的气候特征分析[J].高原气象, 37(6): 1458-1469.DOI: 10.7522/j.issn.1000-0534.2018.00051.
[22]郭东林, 杨梅学, 2010.SHAW模式对青藏高原中部季节冻土区土壤温、 湿度的模拟[J].高原气象, 29(6): 1369-1377.
[23]李瑞平, 史海滨, 赤江刚夫, 等, 2007.冻融期气温与土壤水盐运移特征研究[J].农业工程学报, 23(4): 70-74.
[24]刘杨, 赵林, 李韧, 2013.基于SHAW模型的青藏高原唐古拉地区活动层土壤水热特征模拟[J].冰川冻土, 35(2): 280-290.
[25]穆文彬, 孙素艳, 马伟希, 等, 2019.若尔盖湿地潜在蒸散量演变特征及影响因素分析[J].高原气象, 38(4): 716-724.DOI: 10. 7522/j.issn.1000-0534.2018.00150.
[26]苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J].高原气象, 37(6): 1470-1485. DOI: 10.7522/j.issn.1000-0534.2018.00040.
[27]王根绪, 沈永平, 钱鞠, 等, 2003.高寒草地植被覆盖变化对土壤水分循环影响研究[J].冰川冻土, 25(6): 653-659.
[28]王利辉, 何晓波, 丁永建, 2017.青藏高原中部高寒草甸蒸散发特征及其影响因素[J].冰川冻土, 39(6): 1-6.
[29]王玉琦, 鲍艳, 南素兰, 2019.青藏高原未来气候变化的热动力成因分析[J].高原气象, 38(1): 29-41.DOI: 10.7522/j.issn. 1000-0534.2018.00066.
[30]吴谋松, 王康, 谭霄, 等, 2013.土壤冻融过程中水流迁移特性及通量模拟[J].水科学进展, 24(4): 543-550.
[31]吴青柏, 牛富俊, 2013.青藏高原多年冻土变化与工程稳定性[J].科学通报, 58(2): 115-130.
[32]肖瑶, 赵林, 李韧, 等, 2011.青藏高原腹地高原多年冻土区能量收支各分量的季节变化特征[J].冰川冻土, 33(5): 1033-1039.
[33]严晓强, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地长时间地面热源特征及其气候影响因子分析[J].高原气象, 38(2): 253-263.DOI: 10.7522/j.issn.1000-0534.2018.00091.
[34]张明礼, 温智, 董建华, 等, 2018.多年冻土活动层浅层包气带水-汽-热耦合运移规律[J].岩土力学, 39(2): 561-570.
[35]张明礼, 温智, 薛珂, 等, 2016.北麓河地区多年冻土地表能量收支分析[J].干旱区资源与环境, 30(9): 134-138.
[36]张伟, 周剑, 王根绪, 2013.积雪和有机质土对青藏高原冻土活动层的影响[J].冰川冻土, 35(3): 528-540.
[37]赵林, 程国栋, 李述训, 等, 2000.青藏高原五道梁附近多年冻土活动层冻结和融化过程[J].科学通报, 45(11): 1205-1211.
[38]赵林, 李韧, 丁永建, 2008.唐古拉地区活动层土壤水热特征的模拟研究[J].冰川冻土, 30(6): 930-937.
[39]郑汇璇, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地总体输送系数及地面热源特征[J].高原气象, 38(3): 497-506.DOI: 10.7522/j.issn.1000-0534.2019.00024.
[40]周剑, 王根绪, 李新, 等, 2008.高寒冻土地区草甸草地生态系统的能量-水分平衡分析[J].冰川冻土, 30(3): 398-407.
Outlines

/