null | Cao B, Zhang T J, Wu Q B, al et, 2019.Brief communication: Evaluation and inter-comparisons of Qinghai-Tibet Plateau permafrost maps based on a new inventory of field evidence[J]. Cryosphere, 13(2): 511-519.DOI: 10.5194/tc-13-511-2019 . |
null | Deng M S, Meng X H, Lyv Y Q, al et, 2020.Comparison of soil water and heat transfer modeling over the Tibetan Plateau using two Community Land Surface Model (CLM) versions[J]. Journal of Advances in Modeling Earth Systems, 12(10): 1-20.DOI: 10.1029/2020MS002189 . |
null | |
null | Farouki O T, 1981.The thermal properties of soils in cold regions[J].Cold Regions Science and Technology, 5(1): 67-75. |
null | Gao Y H, Li K, Chen F, al et, 2015.Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau[J]. Journal of Geophysical Research-Atmospheres, 120(18): 9258-9278.DOI: 10.1002/2015JD023404 . |
null | Gao Y H, Xiao L H, Chen D L, al et, 2017.Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau[J]. Climate Dynamics, 48(5/6): 1705-1721.DOI: 10.1007/s00382-016-3168-6 . |
null | Guo D L, Sun J Q, 2015.Permafrost thaw and associated settlement hazard onset timing over the Qinghai-Tibet engineering corridor[J]. International Journal of Disaster Risk Science, 6(4): 347-358.DOI: 10.1007/s13753-015-0072-3 . |
null | Guo D L, Wang H J, 2014.Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J]. Chinese Science Bulletin, 59(20): 2439-2448.DOI: 10.1007/s11434-014-0347-x . |
null | Guo D, Wang H, Wang A, 2017.Sensitivity of historical simulation of the permafrost to different atmospheric forcing data sets from 1979 to 2009[J]. Journal of Geophysical Research: Atmospheres, 122(22): 12269-12284.DOI: 10.1002/2017jd027477 . |
null | Guo D, Wang H, 2013. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J].Journal of Geophysical Research: Atmospheres, 118(11): 5216-5230.DOI: 10.1002/jgrd.50457 . |
null | Kang S C, Xu Y W, You Q L, al et, 2010.Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 5(1): 1-8.DOI: 10.1088/1748-9326/5/1/015101 . |
null | Laio F, D'Odorico P, Ridolfi L, 2006.An analytical model to relate the vertical root distribution to climate and soil properties[J]. Geophysical Research Letters, 33(18): 1-5.DOI: 10.1029/2006GL027331 . |
null | Li X F, Wu T H, Wu X D, al et, 2021.Assessing the simulated soil hydrothermal regime of the active layer from the Noah-MP land surface model (v1.1) in the permafrost regions of the Qinghai-Tibet Plateau[J]. Geoscientific Model Development, 14(3): 1753-1771.DOI: 10.5194/gmd-14-1753-2021 . |
null | Li X F, Wu T H, Zhu X F, al et, 2020.Improving the Noah-MP Model for simulating hydrothermal regime of the active layer in the permafrost regions of the Qinghai-Tibet Plateau[J]. Journal of Geophysical Research-Atmospheres, 125(16): 1-20.DOI: 10. 1029/2020JD032588 . |
null | Liu G Y, Xie C W, Zhao L, al et, 2021.Permafrost warming near the northern limit of permafrost on the Qinghai-Tibetan Plateau during the period from 2005 to 2017: A case study in the Xidatan area[J]. Permafrost and Periglacial Processes, 32(3): 323-334.DOI: 10.1002/ppp.2089 . |
null | Luo J, Niu F J, Lin Z J, al et, 2018.Variations in the northern permafrost boundary over the last four decades in the Xidatan region, Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 15(4): 765-778.DOI: 10.1007/s11629-017-4731-2 . |
null | Luo S Q, Fang X W, Lyu S H, al et, 2017.Improving CLM4.5 simulations of land-atmosphere exchange during freeze-thaw processes on the Tibetan Plateau[J]. Journal of Meteorological Research, 31(5): 916-930.DOI: 10.1007/s13351-017-6063-0 . |
null | Luo S Q, Lu S H, Zhang Y, 2009.Development and validation of the frozen soil parameterization scheme in Common Land Model[J]. Cold Regions Science and Technology, 55(1): 130-140.DOI: 10.1016/j.coldregions.2008.07.009 . |
null | Qin D H, Zhou B T, Xiao C D, 2014.Progress in studies of cryospheric changes and their impacts on climate of china[J]. Journal of Meteorological Research, 28(5): 732-746.DOI: 10.1007/s13351-014-4029-z . |
null | Ran Y H, Li X, Cheng G D, 2018.Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau[J]. Cryosphere, 12(2): 595-608.DOI: 10.5194/tc-12-595-2018 . |
null | Schuur E A G, McGuire A D, Schadel C, al et, 2015.Climate change and the permafrost carbon feedback[J]. Nature, 520(7546): 171-179.DOI: 10.1038/nature14338 . |
null | Song Y M, Wang Z F, Qi L L, al et, 2019.Soil moisture memory and its effect on the surface water and heat fluxes on seasonal and interannual time scales[J]. Journal of Geophysical Research: Atmospheres, 124(20): 10730-10741.DOI: 10.1029/2019JD030893 . |
null | Swenson S C, Lawrence D M, Lee H, 2012.Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model[J]. Journal of Advances in Modeling Earth Systems, 4.DOI: 10.1029/2012MS000165 . |
null | Swenson S C, Lawrence D M, 2012.A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance[J]. Journal of Geophysical Research: Atmospheres, 117: 1-20.DOI: 10.1029/2012JD018178 . |
null | Wu Q B, Zhang T J, Liu Y Z, 2010.Permafrost temperatures and thickness on the Qinghai-Tibet Plateau[J]. Global and Planetary Change, 72(1/2): 32-38.DOI: 10.1016/j.gloplacha. 2010.03.001 . |
null | Wu Q B, Zhang T J, 2010.Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research: Atmospheres, 115: 1-12.DOI: 10.1029/2009JD012974 . |
null | Yang K, Wang C H, Li S Y, 2018.Improved simulation of frozen-thawing process in Land Surface Model (CLM4.5)[J]. Journal of Geophysical Research: Atmospheres, 123(23): 13238-13258.DOI: 10.1029/2017JD028260 . |
null | Yang K, Wu H, Qin J, al et, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 112: 79-91.DOI: 10. 1016/j.gloplacha.2013.12.001 . |
null | Yang S H, Li R, Wu T H, al et, 2021.Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau[J]. Geoderma, 401: 1-16.DOI: 10.1016/j.geoderma.2021.115330 |
null | Yin G, Luo J, Niu F, al et, 2021.Thermal regime and variations in the island permafrost near the northern permafrost boundary in Xidatan, Qinghai-Tibet Plateau[J]. Frontiers in Earth Science, 9: 1-12.DOI: 10.3389/feart.2021.708630 . |
null | Zou D F, Zhao L, Sheng Y, al et, 2017.A new map of permafrost distribution on the Tibetan Plateau[J]. Cryosphere, 11(6): 2527-2542.DOI: 10.5194/tc-11-2527-2017 . |
null | |
null | |
null | 陈渤黎, 吕世华, 罗斯琼, 2012.CLM 3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J].高原气象, 31(6): 1511-1522. |
null | |
null | 吴通华, 2020.2014-2016年青藏高原西大滩多年冻土活动层数据[DS].国家冰川冻土沙漠科学数据中心( |
null | |
null | |
null | |
null | 罗斯琼, 吕世华, 张宇, 等, 2008.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象, 27(2): 259-271. |
null | |
null | |
null | |
null | |
null | 肖瑶, 2020.2014-2016年青藏高原西大滩冻土气象数据集[DS].国家冰川冻土沙漠科学数据中心( |
null | |
null | 姚檀栋, 秦大河, 沈永平, 等, 2013.青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J].自然杂志, 35(3): 179-186. |
null | |
null | 赵林, 盛煜, 2019.青藏高原多年冻土及变化[M].北京: 科学出版社. |