论文

一个Navier-Stokes算子方程广义能量的存在性

  • 刘春 ,
  • 刘思波 ,
  • 张春辉 ,
  • 郭萨萨
展开
  • 四川省内江市气象局, 内江 641000;2. 成都信息工程学院, 成都 610225

收稿日期: 2012-04-23

  网络出版日期: 2014-04-28

基金资助

国家重点基础研究发展973计划项目(2012CB417202);四川省气象局课题(川气课题2013-开发-09)

Existence of Generalized Energy about a Navier-Stokes Operator Equation

  • LIU Chun ,
  • LIU Sibo ,
  • ZHANG Chunhui ,
  • GUO Sasa
Expand
  • Neijiang Meteorological Bureau,Neijiang 641000, China;2. Chengdu University of Information Technology, Chengdu 610225, China

Received date: 2012-04-23

  Online published: 2014-04-28

摘要

利用泛函理论,建立关于大气系统Navier-Stokes动力学方程组各变量的Hilbert空间,并将该方程组化为一个Hilbert空间中的非线性算子方程。在此基础上,为考虑方程的整体特征,通过必要的简化,将一个本质为欠定的偏微分方程组化为一个关于广义能量的非线性偏微分方程。由于该偏微分方程的非线性性质,试图考虑其弱解的存在性。经分析发现,在外源强迫为已知或固定的情况下,如果在湍流闭合过程,使关于广义能量方程的非线性项系数具有强椭圆性质,那么根据连续正规算子方程的投影解法,可以确定该非线性偏微分方程具有投影解,且投影解收敛于弱解,从而得出广义能量弱解的存在性。对于大气运动而言,其能量守恒是重要的,因此,最后对广义能量守恒进行了讨论,得到广义能量守恒的条件 。

本文引用格式

刘春 , 刘思波 , 张春辉 , 郭萨萨 . 一个Navier-Stokes算子方程广义能量的存在性[J]. 高原气象, 2014 , 33(2) : 467 -473 . DOI: 10.7522/j.issn.1000-0534.2012.00190

Abstract

The equations are reduced to nonlinear operator equations of Hilbert space by using functional theory, based on each variable Hilbert space of the general system of atmospheric Navier-Stokes dynamics equations. Thereby, considered the equation for the overall characteristics on this basis, using necessary simplification, the underdetermined partial differential equations are reduced to nonlinear partial differential equations about generalized energy. Because of the nonlinear properties of the partial differential equations, the existence of weak solutions is attempted to consider. According to the analysis, in the turbulent closure process, if the nonlinear coefficient of the generalized energy equation has characteristics of strongly elliptic, according to the projection method of the continuous normal operator equations, that nonlinear partial differential equations of generalized energy has a projection determined, which approach the weak solution, while the external force is known or fixed. In last, the existence of weak solutions for generalized energy is obtained. On the movement of atmosphere, its energy conservation is important. Therefore, conserve-ation of generalized energy is discussed. And the conditions of reaching the conservation of general-ized energy is obtained in the last of this paper.

参考文献

[1]李建平, 丑纪范. 大气吸引子的存在性[J]. 中国科学(D辑), 1997, 27(1):89-96.
[2]李燕, 刘新, 李伟平. 青藏高原地区不同下垫面陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(3):581-591.
[3]何由, 阳坤, 姚檀栋, 等. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象, 2012, 31(5):1183-1191.
[4]杨显玉, 文军. 扎陵湖和鄂陵湖大气边界层特征的数值模拟[J]. 高原气象, 2012, 31(4):927-934.
[5]赵大军, 江玉华, 李莹. 一次西南低涡暴雨过程的诊断分析与数值模拟[J]. 高原气象, 2011, 30(5): 1158-1169.
[6]宋雯雯, 李国平. 一次高原低涡过程的数值模拟与结构特征分析[J]. 高原气象, 2011, 30(2): 267-275.
[7]Temam R. Navier-Stokes Equations, Theory and Numerical Analysis[M]. Amsterdam and New York: North-Holland, 1977.
[8]Temam R. Navier-Stokes Equations and Nonlinear Functional Analysis[M]. Philandelphia: SIAM, 1985.
[9]Constantin P, Foias C, Temam R. On the Large Time Galerkin Approximation of the Navier-Stokes Equations[J]. Siam J Nmer Anal, 1984, 21(4): 615-634.
[10]谢志辉, 丑纪范. 大气动力学方程组全局分析的研究进展[J]. 地球科学进展, 1999, 14(2): 133-139.
[11]李建平, 丑纪范. 大气动力学方程组的定性理论及其应用[J]. 大气科学, 1998, 22(4): 443-453.
[12]李建平, 丑纪范. 非线性大气动力学的进展[J]. 大气科学, 2003, 27(4): 653-673.
[13]黄海洋, 郭柏灵. 大尺度大气方程组解和吸引子的存在性[J]. 中国科学(D辑), 2006, 36(4): 392-400.
[14]胡隐樵. 大气热力动力学导论[M]. 北京: 地质出版社, 2002.
[15]雷晋干. 算子方程投影解法[M]. 武汉: 武汉大学出版社, 1987.
文章导航

/