利用19812010年中国西南地区气象站点逐日降水资料以及NCEP/NCAR逐日再分析资料, 使用MTM-SVD方法分析了西南地区降水的季节内振荡特征, 结果表明: 西南地区降水存在显著的14.4候(70天左右)振荡周期, 该季节内振荡在1985年前后最强, 在整个研究时段内夏季更明显.典型循环重建表明, 西南地区降水的季节内振荡整体上有一个从南向北的推进过程, 对OLR的分析表明, 南海—西太平洋地区和孟加拉湾地区是影响西南地区降水的两个关键区.在季节内振荡尺度上影响西南地区降水的OLR异常信号首先出现在爪哇岛附近, 逐渐向东传播到马鲁古群岛地区, 然后北跳传播到北半球的南海—西太平洋地区和孟加拉湾地区, 最后两者先后向北推进影响西南地区降水.
Based on the daily precipitation data from the meteorology stations in southwest China and the NCEP/NCAR reanalysis daily data from 1981 to 2010, using the method of Multi Taper Method-Singular Value Decomposition (MTM-SVD), the characteristic of the precipitation interseasonal oscillation was analyzed. The results show that precipitation in southwest China have significant 14.4 pentads period (70 days). The Intraseasonal Oscillation(ISO) is the strongest around 1985, embodied in the summer of the entire study period. The typical revasculization pointed out that there is an advance from the south to the north of precipitation ISO in southwest China. The OLR analysis shows that the South China Sea—West Pacific and the Bay of Bengal are two key areas affecting precipitation in southwest China. Further analysis showed that the OLR abnormal signal first appeared near the island of Java, the anomaly gradually eastward propagation to the Maluku Islands, and abnormal spread to the South China Sea—West Pacific and the Bay of Bengal region, both next successively northward affect precipitation in Southwest China.
[1]Madden R A, Julian P R. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J]. J Atmos Sci, 1971, 28: 702-708.
[2]Murakami M. 30-40 day global atmospheric changes during the northern summer 1979[J]. GARP Special Report, 1984, 44: 113-116.
[3]Lau K M, Chan P H. Aspects of the 40-50 day oscillation during the northern winter as inferred from out going long-wave radiation[J]. Mon Wea Rev, 1985, 113: 1889-1909.
[4]Li C Y. Intraseasonal (30-50 day) oscillation in the atmosphere[R]. Summer School on Large-Scale Dynamics of the Atmosphere, Beijing, 5-20 August 1988, 361-393.
[5]Chen L X, Xie A. Westward propagation low-frequency oscillation and its teleconnection in the eastern hemisphere[J]. Acta Meteor Sini, 1988, 3(2): 300-312.
[6]张可苏. 40-50天的纬向基流低频振荡及其失稳效应[J]. 大气科学, 1987, 11(3): 227-236.
[7]李崇银, 武培立, 张勤. 北半球大气环流30-60天振荡的一些特征[J]. 中国科学(B辑), 1990, 20(7): 764-774.
[8]李崇银, 张勤. 全球大气低频遥相关[J]. 自然科学进展, 1991, 1(4): 330-334.
[9]何金海, Murakami T, Nakazawa T. 1979年夏季亚洲季风区域40-50天周期振荡的环流及其水汽输送场的变化[J]. 南京气象学院学报, 1984, 2(2): 163-175.
[10]丁一汇, 李崇银, 何金海, 等. 南海季风试验与东亚夏季风[J]. 气象学报, 2004, 6(5): 561-586.
[11]李崇银, 龙振夏, 穆明权. 大气季节内振荡及其重要作用[J]. 大气科学, 2003, 27(4): 518-535.
[12]孙丹, 琚建华, 吕俊梅. 2003年东亚季风季节内振荡对我国东部地区降水的影响[J]. 热带气象学报, 2008, 24(6): 641-648.
[13]章丽娜, 林鹏飞, 熊喆, 等. 热带大气季节内振荡对华南前汛期降水的影响[J]. 大气科学, 2011, 35(3): 560-570.
[14]Yang Hui, Li Chongyin. The relation between atmospheric intraseasonal oscillation and summer severe flood and drought in the Changjiang-Huaihe River basin[J]. Adv Atmos Sci, 2003, 20(4): 540-553.
[15]李桂龙, 李崇银. 江淮流域夏季旱涝与不同时间尺度大气扰动的关系[J]. 大气科学, 1999, 23(1): 39-50.
[16]马宁, 李跃凤, 琚建华. 2008年初中国南方低温雨雪冰冻天气的季节内振荡特征[J]. 高原气象, 2011, 30(2): 318-327.
[17]梁萍, 丁一汇. 东亚梅雨季节内振荡的气候特征[J]. 气象学报, 2012, 70(3): 418-435.
[18]朱乾根, 徐国强. 1998年夏季中国南部低频降水特征与南海低频夏季风活动[J]. 气象科学, 2000, 20(3): 239-248.
[19]琚建华, 刘一伶, 李汀, 等. 南海夏季风季节内振荡的年际变化研究[J]. 大气科学, 2010, 34(2): 253-261.
[20]吕俊梅, 琚建华, 任菊章, 等. 热带大气MJO活动异常对 2009-2010 年云南极端干旱的影响[J]. 中国科学, 2012, 42(4): 599-613.
[21]李汀, 琚建华. 亚洲夏季风季节内振荡对云南主汛期降水的影响 Ⅰ: 云南主汛期季节内振荡特征及其传播过程[J]. 高原气象, 2013, 32(3): 617-625, doi: 10.7522/j.issn.1000-0534.2012.00060.
[22]李汀, 琚建华. 亚洲夏季风季节内振荡对云南主汛期降水的影响 Ⅱ: 云南主汛期季节内振荡活动过程及其对MJO活动的响应[J]. 高原气象, 2013, 32(3): 626-634, doi: 10.7522/j.issn.1000-0534.2012.00061.
[23]李永华, 徐海明, 白莹莹, 等. 我国西南地区东部夏季降水的时空特征[J]. 高原气象, 2010, 29(2): 523- 530.
[24]Mann M E, Park J. Global-scale modes of surface temperature variability on interannual to century timescales[J]. J Geophys Res, 1994, 99(D12): 25819-25833.
[25]Mann M E, Park J. Joint spatio-temporal modes of surface temperature and sea level pressure variability in the Northern Hemisphere during the last century[J]. J Climate, 1996, 9: 2137-2162.
[26]Mann M E, Park J. Oscillatory spatiotemporal signal detection in climate studies: A multiple-taper spectral domain approach[J]. Advances in Geophysics, 1999, 41: 1-131.
[27]Rajagopalan B, Mann M E, Lall U. A multivariate frequency-domain approach to long-lead climatic forecasting[J]. Wea Forecasting, 1998, 13(1): 58-74.
[28]魏凤英. 现代气候统计诊断与预测技术[M]. 第2版. 北京: 气象出版社, 2007.
[29]Han X, Wei F, Tourre Y, et al. Spatio-temporal variability of Northern Hemipheric Sea Level Pressure (SLP) and precipitation over the mid-to-low reaches of the Yangtze River[J]. Adv Atmos Sci, 2008, 25(3): 458-466.
[30]Small D, Islam S. Low frequency variability in fall precipitation across the United States[J]. Water Resour Res, 2008, 44(4): W04426, doi: 10.1029/2006WR005623.2008.
[31]Apipattanavis S, Mccabe G J, Rajagopalan B, et al. Joint spatiotemporal variability of global sea surface temperatures and global palmer drought severity index values[J]. J Climate, 2009, 22(23): 6251-6267.
[32]王春学, 李栋梁. 基于MTM-SVD方法的黄河流域夏季降水年际变化及其主要影响因子分析[J]. 大气科学, 2012, 36(4): 823-834.
[33]李永华, 徐海明, 高阳华, 等. 西南地区东部夏季典型旱涝年的OLR特征[J]. 高原气象, 2009, 28(4): 861-869.
[34]陈权亮, 倪长健, 万文龙. 川渝盆地夏季旱涝变化特征及成因分析[J]. 高原气象, 2010, 29(3): 587-594.