论文

中层涡旋诱生南海热带低压形成的位涡反演分析

  • 袁金南 ,
  • 谷德军 ,
  • 廖菲
展开
  • 中国气象局广州热带海洋气象研究所, 广州 510080

收稿日期: 2013-03-18

  网络出版日期: 2015-02-28

基金资助

国家重点基础研究发展计划(973计划)项目(2009CB421500); 气象行业专项(GYHY201106036); 国家自然科学基金项目(40875026, 91015011); 广东省自然科学基金团队项目(8351030101000002)

PV Inversion Analysis of a Mid-level Vortex Induced a Tropical Depression Formation in South China Sea

  • YUAN Jinnan ,
  • GU Dejun ,
  • LIAO Fei
Expand
  • Guangzhou Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou 510080, China

Received date: 2013-03-18

  Online published: 2015-02-28

摘要

利用NCEP 1°×1°最终分析资料FNL和位涡反演方法, 对2006年8月下旬一次中层涡旋诱发南海热带低压的形成过程进行了分析.结果表明, 在中层涡旋诱发南海热带低压形成时高层暖心结构经历了由上向下逐渐发展的过程, 而中层气旋性环流经历了由上向下快速发展的过程.高层暖心结构的向下发展主要与中低层凝结潜热加热作用和干空气从高层侵入有关, 而高层波动的影响不明显, 暖心发展到达近海面需要有底层热力异常和中低层凝结潜热加热作用的共同配合.中层气旋性环流的向下发展主要与中低层凝结潜热加热作用有关, 高层波动对中低层涡度的影响不明显, 而底层热力异常主要在900 hPa以下产生负涡度.综合分析表明, 中低层凝结潜热加热对南海热带低压的生成和发展起关键作用.

本文引用格式

袁金南 , 谷德军 , 廖菲 . 中层涡旋诱生南海热带低压形成的位涡反演分析[J]. 高原气象, 2015 , 34(1) : 93 -102 . DOI: 10.7522/j.issn.1000-0534.2013.00145

Abstract

Using NCEP 1°×1° Final Analysis (FNL) data and potential vorticity (PV) inversion technique, the process of a mid-level vortex induced tropical depression formation in the South China Sea (SCS) in late August 2006 was analyzed. The results show that: The upper warm-core structure experienced a process of gradual development from up to down and the mid-level cyclonic circulation experienced a process of fast development from up to down during the mid-level vortex induced tropical depression formation in the SCS. The downward development of upper warm-core structure is mainly associated with the action of condensation latent heating in middle and low level and dry air intrusion from high level to middle level. The influence of high level fluctuations is not obvious. However, the warm-core developing downward to near sea surface need the common actions of bottom thermodynamic anomaly together with condensation latent heating in middle and low level. The downward development of mid-level cyclonic circulation is also mainly associated with the action of condensation latent heating in middle and low level. The influence of high level fluctuations on the vorticity in middle and low level is not obvious. And the bottom thermodynamic anomaly mainly causes negative vorticity below 900 hPa. The comprehensive analysis shows that the condensation latent heating in middle and low level plays a key role in the tropical depression formation and development in the SCS.

参考文献

[1]Chan J C L, Kepert J D. Global perspectives on tropical cyclones: from science to mitigation[M]. Singapore: World Scientific Publishing Co Pte Ltd, 2010: 1-436.
[2]Chen S S, Frank W M. A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics[J]. J Atmos Sci, 1993, 50: 2401-2426.
[3]Ritchie E A, Holland G J. Scale interactions during the formation of Typhoon Irving[J]. Mon Wea Rev, 1997, 125: 1377-1396.
[4]Simpson J, Ritchie E, Holland G J, et al. Mesoscale interactions in tropical cyclone genesis[J]. Mon Wea Rev, 1997, 125: 2643-2661.
[5]杨引明, 朱雪松, 陶祖钰. 上海特大暴雨热带低压结构的数值模拟及其加强机制的分析[J]. 高原气象, 2011, 30(2): 416-427.
[6]梁必骐. 南海热带大气环流系统[M]. 北京: 气象出版社, 1991: 1-244.
[7]Davis C A, Bosart L F. The TT Problem: Forecasting the tropical transition of cyclones[J]. Bull Amer Meteor Soc, 2004, 85: 1657-1662.
[8]Gyakum J R. On the evolution of the QE II strom. II: Dynamic and thermodynamic structure[J]. Mon Wea Rev, 1983, 111: 1156-1173.
[9]Reed R J, Albright M D, Simmons A J, et al. The role of latent heat release in explosive cyclogenesis: Three examples based on ECMWF operational forecasts[J]. Wea forecasting, 1988, 3: 217-229.
[10]Davis C A. A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis[J]. Mon Wea Rev, 1992, 120: 2409-2428.
[11]Stoelinga M T. A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone[J]. Mon Wea Rev, 1996, 124: 849-874.
[12]周毅, 寇正, 王云峰. 气旋快速发展过程中潜热释放重要性的位涡反演诊断[J]. 气象科学, 1998, 18(4): 355-360.
[13]Ahmadi-Givi F, Graig G C, Plant R S. The dynamics of a midlatitude cyclone with very strong latent-heat release[J]. Quart J Roy Meteor Soc, 2004, 130: 295-323.
[14]Zhao B K, Wu G X, Yao X P. Potential vorticity structure and inversion of the cyclogenesis over the Yangtze River and Huaihe River Valleys[J]. Adv Atmos Sci, 2007, 24(1): 44-54.
[15]Hoskins B J, McIntyre M E, Robertson A W. On the use and significance of isentropic potential vorticity maps[J]. Quart J Roy Meteor Soc, 1985, 111: 877-946.
[16]Hoskins B J. A potential vorticity view of synoptic development[J]. Meteor Appl, 1997, 4: 325-334.
[17]Davis C A, Emanuel K A. Potential vorticity diagnostics of cyclogenesis[J]. Mon Wea Rev, 1991, 119: 1929-1953.
[18]Davis C A. Piecewise potential vorticity inversion[J]. J Atmos Sci, 1992, 49(16): 1397-1411.
[19]黄彬, 陈涛, 康志明, 等. 诱发渤海风暴潮的黄河气旋动力学诊断和机制分析[J]. 高原气象, 2011, 30(4): 901-912.
[20]葛晶晶, 陆汉城, 张群, 等. 强烈发展的中尺度涡旋影响下持续性暴雨的位涡诊断[J]. 高原气象, 2012, 31(4): 952-962.
[21]王勇, 丁治英, 李勋, 等. 台风"莫拉克"登陆前后的动力诊断分析[J]. 高原气象, 2012, 31(5): 1356-1365.
[22]Basset H A, Ali A M. Diagnostic of cyclogenesis using potential vorticity[J]. Atmósfera, 2006, 19(4): 213-234.
[23]Bracegirdle T J, Gray S L. The dynamics of a polar low assessed using potential vorticity inversion[J]. Quart J Roy Meteor Soc, 2009, 135: 880-893.
[24]赵兵科, 刘屹岷, 梁萍. 夏季梅雨期一次强江淮气旋位涡反演分析[J]. 高原气象, 2008, 27(增刊1): 158-169.
[25]赵兵科, 万日金, 鲁小琴. 2003年夏季梅雨期强弱江淮气旋成因对比分析[J]. 高原气象, 2010, 29(2): 309-320.
[26]Wu C C, Emanuel K A. Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991)[J]. Mon Wea Rev, 1995, 123: 69-92.
[27]Wu C C, Emanuel K A. Potential vorticity diagnostics of hurricane movement. Part II: Tropical storm Ana (1991) and hurricane Andrew (1992)[J]. Mon Wea Rev, 1995, 123: 93-109.
[28]Wang X B, Zhang D L. Potential vorticity diagnosis of a simulated hurricane. Part I: Formulation and quasi-balanced flow[J]. J Atmos Sci, 2003, 60: 1593-1607.
[29]Zhang D L, Kieu C Q. Potential vorticity diagnosis of a simulated hurricane. Part II: Quasi-balanced contributions to forced secondary circulations[J]. J Atmos Sci, 2006, 63: 2898-2914.
[30]Kieu C Q, Zhang D L. A piecewise potential vorticity inversion algorithm and its application to hurriance inner-core anomalies[J]. J Atmos Sci, 2010, 67: 2616-2631.
[31]Charney J G. The use of the primitive equations of motion in numerical prediction[J]. Tellus, 1955, 7: 22-26.
[32]Bretherton F P. Critical layer instability in baroclinic flows[J]. Quart J Roy Meteor Soc, 1966, 92: 325-334.
[33]Rossby C G. Planetary flow patterns in the atmosphere[J]. Quart J Roy Meteor Soc, 1940, 66(Suppl): 68-87.
[34]Ertel H. Ein neuer hydrodynamischer wirbelsatz[J]. Meteor Z, 1942, 59: 277-281.
[35]Mundell D B. Prediction of tropical cyclone rapid intensification events[D]. Colorado: Department of Atmospheric Science, Colorado State University, 1990: 186.
[36]董美莹, 陈联寿, 程正泉, 等. 地形影响热带气旋"泰利"降水增幅的数值研究[J]. 高原气象, 2011, 30(3): 700-710.
文章导航

/