从位涡收支的角度对一次东北冷涡发展过程进行了诊断分析, 研究了位涡趋势方程中各趋势项对冷涡发展的贡献.结果表明, 在对流层低层东北冷涡的发展过程中, 非绝热加热率、水平平流位涡以及非平流的位涡趋势对低层位涡的增强做正贡献, 有利于低层冷涡的发展, 也充分说明了非绝热加热对低层冷涡的发展所起的重要作用; 而垂直平流位涡刚好相反, 对低层位涡的增强做负贡献, 不利于低层冷涡的发展.从垂直结构看, 水平平流位涡主要是在对流层低层和高层对位涡发展有正贡献; 而垂直平流位涡是在中层促使位涡增强; 非平流引起的位涡变化主要是在低层; 由平流和非平流引起的总位涡趋势增大, 促使冷涡加强发展.
Development process of cold vortex over Northeast China from the point of view of the potantial vorticity (PV) budget was diagnostic analysed, in order to illustrate the contribution to the development of the cold vortex in PV tendency equation. The results show that: The diabatic heating rate, the horizontal advective and non-advective PV tendency do positive contribution to enhancement of PV on the development process of northeast cold vortex in the lower troposphere. They are conducive to the development of low-level cold vortex and also fully illustrated the diabatic heating have played an important role; Vertical advective PV is just the opposite. It do negative contribution to enhancement of the low-level PV and is not conducive to the development of low-level cold vortex. From the vertical structure, the horizontal advective PV tendency do positive contribution to enhancement of PV in the tropospheric low and high level; While the vertical advective PV tendency enhanced PV in the middle; PV changes caused by non-advection mainly in the lower; Increases of the total PV tendency caused by advection and non-advection will lead to strengthen development of cold vortex.
[1]陶诗言等. 中国之暴雨[M]. 北京: 科学出版社, 1980: 1-225.
[2]孙力, 郑秀雅, 王琪, 等. 东北冷涡的时空分布特征及其东亚大型环流系统之间的关系[J]. 应用气象学报, 1994, 5(3): 297-303.
[3]刘宗秀, 廉毅, 高枞亭, 等. 东北冷涡持续活动时期的北半球500 hPa环流特征分析[J]. 大气科学, 2002, 26(3): 361-372.
[4]陈力强, 陈受钧, 周小珊, 等. 东北冷涡诱发的一次MCS结构特征数值模拟[J]. 气象学报, 2005, 63(2): 173-183.
[5]陈力强, 张立祥, 周小珊. 东北冷涡不稳定能量分布特征及其与降水落区的关系[J]. 高原气象, 2008, 27(2): 339-348.
[6]Chen S J, Bai L S, Barnes S L. Omega diagnosis of a cold vortex with severe convection[J]. Wea Forecasting, 1988, 3: 296-303.
[7]钟水新, 王东海, 张人禾, 等. 一次东北冷涡降水过程的结构特征与影响因子分析[J]. 高原气象, 2011, 30(4): 951-960.
[8]张云, 雷恒池, 钱贞成. 一次东北冷涡衰退阶段暴雨成因分析[J]. 大气科学, 2008, 32(3): 481-498.
[9]陈艳秋, 余志豪. 东北冷涡的位涡动力诊断模型及应用[J]. 气象科学, 2003, 23(4): 446-451.
[10]吴迪, 姚秀萍, 寿绍文. 干侵入对一次东北冷涡过程的作用分析[J]. 高原气象, 2010, 29(5): 1208-1217.
[11]王建中, 马淑芬, 丁一汇. 位涡在暴雨成因分析中的应用[J]. 应用气象学报, 1996, 7(1): 19-27.
[12]于玉斌, 姚秀萍. 华北一次特大台风暴雨过程的位涡诊断分析[J]. 高原气象, 2000, 19(1): 111-121.
[13]牛宝山, 丁治英, 王劲松. 一次爆发性气旋的发展与湿位涡关系的研究[J]. 南京气象学院学报, 2003, 26 (1): 8-16.
[14]张艳霞, 钱永甫, 翟盘茂. 大气湿位涡影响夏季江淮降水异常的机理分析[J]. 高原气象, 2008, 27(1): 26-35.
[15]葛晶晶, 陆汉城, 张群, 等. 强烈发展的中尺度涡旋影响下持续性暴雨的位涡诊断[J]. 高原气象, 2012, 31(4): 952-962.
[16]王宏, 王万筠, 余锦华, 等. 河北东北部暴雪天气过程的湿位涡分析[J]. 高原气象, 2012, 31(5): 1302-1308.
[17]宋雯雯, 李国平. 一次高原低涡过程的数值模拟与结构特征分析[J]. 高原气象, 2011, 30(2): 267-276.
[18]张元春, 孙建华, 傅慎明. 冬季一次引发华北暴雪的低涡涡度分析[J]. 高原气象, 2012, 31(2): 387-399.
[19]赖绍钧, 何芬, 陈海山, 等. 华南前汛期福建一次致洪暴雨过程的中尺度结构特征[J]. 高原气象, 2012, 31(1): 167-175.
[20]王永中, 杨大升. 暴雨和低层流场的位涡[J]. 大气科学, 1984, 8(4): 411-417.
[21]江敦春, 周德佩. 位涡与梅雨期暴雨[J]. 南京大学学报, 1985, 21(1): 202-209.
[22]袁佳双, 寿绍文. 高低空位涡扰动、非绝热加热与气旋的发生发展[J]. 热带气象学报, 2002, 18(2): 121-130.
[23]Lackmann G M. Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones[J]. Mon Wea Rev, 2002, 130(1): 59-74.
[24]Martin J E, Otkin J A. The rapid growth and decay of an extratropical cyclone over the central Pacific Ocean[J]. Wea Forecasting, 2004, 19(2): 358-376.
[25]Reeves H D, Lackmann G M. The effects of diabatic redistribution of potential vorticity on cold frontal rainbands and cold front propagation[C]. 15<sup>th</sup> Conf. on Numerical Weather Prediction, San Antonio, Texas, Amer Meteor Soc, 2002.
[26]赵兵科, 吴国雄, 姚秀萍. 2003年夏季梅雨期一次强气旋发展的位涡诊断分析[J]. 大气科学, 2008, 32(6): 1241-1255.
[27]Cammas J P, Keyser D, Lackmann G M, et al. Diabatic redistribution of potential vorticity accompanying the development of an outflow jet with in a strong extratropical cyclone[C]. Preprints, Int. Symp on the Life Cycles of Extratropical Cyclones, Bergen, Norway, Amer Meteor Soc, 1994: 403-409.
[28]Emanuel K A, Fantini M, Thorpe A J. Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models[J]. J Atmos Sci, 1987, 44(12): 1559-1587.