[1]Aumann H H, Chahine M T, Gautier C, et al, 2003. AIRS/AMSU/HSB on the Aqua mission:design, science objectives, data products, and processing systems[J]. IEEE Trans Geosci Remote Sens, 41(2):253-264. DOI:10.1109/TGRS. 2002.808356.
[2]Botes D, Mecikalski J R, Jedlovec G J, 2012. Atmospheric Infrared Sounder (AIRS) sounding evaluation and analysis of the pre-convective environment[J]. J Geophys Res Atmos, 117(117):9205. DOI:10.1029/2011JD016996.
[3]Boylan P, Wang J, Cohn S A, et al, 2015. Validation of AIRS version 6 temperature profiles and surface-based inversions over Antarctica using Concordiasi dropsondedata[J]. J Geophys Res Atmos, 120(3):992-1007. DOI:10.1002/2014JD022551.
[4]Divakarla M G, Barnet C D, Goldberg M D, et al, 2006. Validation of atmospheric infrared sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts[J]. J Geophys Res Atmos, 111(D9):9-15. DOI:10.1029/2005JD006116.
[5]Eresmaa N, Karppinen A, Joffre S M, et al, 2005. Mixing height determination by ceilometer[J]. Atmospheric Chemistry & Physics Discussions, 5(6):12697-12722. DOI:10.5194/acpd-5-12697-2005.
[6]Gettelman A, Kinnison D E, Dunkerton T J, et al, 2004. Impact of monsoon circulations on the upper troposphere and lower stratosphere[J]. J Geophys Res Atmos, 109(22):51-67. DOI:10.1029/2004JD004878.
[7]Heffter J L, 1980. Transport layer depth calculations[C]//Bull Amer Meteor Soc. 45 Beacon ST, Boston, MA 02108-3693: Amer Meteorological Soc, 61(1): 97-97.
[8]Hennemuth B, Lammert A, 2006. Determination of the atmospheric boundary layer height from radiosonde and lidarbackscatter[J]. Bound-Layer Meteor, 120(1):181-200. DOI:10.1007/s10546-005-9035-3.
[9]Holzworth G C, 1964. Estimates of mean maximum mixing depths in the contiguous United States[J]. Mon Wea Rev, 1964, 92(5): 235-242. DOI: <a href="10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2" target="_blank">10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2</a>.
[10]Holzworth G C, 1967. Mixing depths, wind speeds and air pollution potential for selected locations in the United States[J]. J Appl Meteor, 6(6):1039-1044. DOI:10.1175/1520-0450(1967)006<1039:MDWSAA>2.0.CO;2.
[11]Liu S Y, Liang X Z, 2010. Observed diurnal cycle climatology of planetary boundary layer height[J]. J Climate, 23(21):5790-5809. DOI:10.1175/2010jcli3552.1.
[12]Martins J P A, Teixeira J, Soares P M M, et al, 2010. Infrared sounding of the trade-wind boundary layer:AIRS and the RICO experiment[J]. Geophys Res Lett, 37(37):701-719. DOI:10.1029/2010GL045902.
[13]Mehta S K, Ratnam M V, Sunilkumar S V, et al, 2016. Diurnal variability of the atmospheric boundary layer height over a tropical station in the Indian monsoon region[J]. Atmos Chem Phys, 17(1):1-29. DOI:10.5194/acp-17-531-2017.
[14]Rao S T, Hao W, Xiu A, et al, 2001. Evaluating the performance of regional-scale photochemical modeling systems:Part Ⅰ-meteorological predictions[J]. Atmos Environ, 35(24):4159-4174. DOI:10.1016/S1352-2310(01)00182-0.
[15]Reale T, Sun B, Tilley F H, et al, 2012. The NOAA products validation system (NPROVS)[J]. J Atmos Ocean Technol, 29(5):629-645. DOI:10.1175/JTECH-D-11-00072.1.
[16]Savitzky A, Golay M J E, 1964. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 36(8):1627-1639. DOI:10.1021/ac60214a047.
[17]Seibert P, Beyrich F, Gryning S E, et al, 2000. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmos Environ, 34(7):1001-1027. DOI:10.1016/S1352-2310(99)00349-0.
[18]Seidel D J, Ao C O, Li K, 2010. Estimating climatological planetary boundary layer heights from radiosonde observations:Comparison of methods and uncertainty analysis[J]. J Geophys Res Atmos, 115(D16):751-763. DOI:10.1016/S1352-2310(99)00349-0.
[19]Sivaraman C, McFarlane, S, Chapman E, 2013. Planetary boundary layer (PBL) height value added product (VAP): Radiosonde retrievals[J/OL]. U. S. DOE, Office of Science, Office of Biological and Environmental Research. DOE/SC-ARM/TR-132. <a href="http://www.doc88.com/p-9032320085477.html" target="_blank">http://www.doc88.com/p-9032320085477.html</a>. [2017-08-20]
[20]Stull R B, 2012. An introduction to boundary layermeteorology[M]. Springer Science & Business Media.
[21]Yu S, Eder B K, Dennis R, et al, 2006. New unbiased symmetric metrics for evaluation of air qualitymodels[J]. Atmos Sci Lett, 7(1):26-34. DOI:10.1002/asl. 125.
[22]Wu L, 2009. Comparison of atmospheric infrared sounder temperature and relative humidity profiles with NASA African monsoon multidisciplinary analyses (NAMMA), dropsonde observations[J]. J Geophys Res Atmos, 114(D19):5577-5594. DOI:10.1029/2009JD012083.
[23]Zhang W C, Guo J P, Miao Y C, et al, 2016. Planetary boundary layer height from CALIOP compared to radiosonde over China[J]. Atmos Chem Phys, 16(15):1-31. DOI:10.5194/acp-16-9951-2016.
[24]Zilitinkevich S, Baklanov A, 2002. Calculation of the height of the stable boundary layer in practical applications[J]. Bound-Layer Meteor, 5(3):389-409. DOI:10.1023/A:1020376832738.
[25]Cheng L, Zhang J, Liu Z Y, 2015. The examination and research for AIRS data applicability before rainstorm[J]. J Meteor Sci, 35(6):710-719. DOI:10.3969/2015jms. 0053.<br/>陈立, 张杰, 刘振元, 2015.暴雨发生前AIRS卫星资料适用性检验研究[J].气象科学, 35(6):710-719.
[26]Gao W H, Zhao F S, Gai C S, 2006. Validation of AIRS retrieval temperature and moisture products and their application in numerical models[J]. Acta Meteor Sinica, 64(3):271-280. DOI:10.11676/qxxb2006.026.<br/>高文华, 赵凤生, 盖长松, 2006.大气红外探测器(AIRS)温、湿度反演产品的有效性检验及在数值模式中的应用研究[J].气象学报, 64(3):271-280.
[27]Li Y Y, Zhang Q, Zhang A P, et al, 2016. Analysis on atmosphere boundary layer variation characteristics and their impact factors in arid region and semi-arid region over Northwest China[J]. Plateau Meteor, 35(2):385-396. DOI:10.7522/j. issn. 1000-0534.2014.00153.<br/>李岩瑛, 张强, 张爱萍, 等, 2016.干旱半干旱区边界层变化特征及其影响因子分析[J].高原气象, 35(2):385-396.
[28]Lu A G, 2009. Spatial and temporal precipitation variation on the Loess Plateau in the past half century[J]. Ecology Environ Sci, 18(3):957-959. DOI:10.16258/j. cnki. 1674-5906.2009.03.027.<br/>卢爱刚, 2009.半个世纪以来黄土高原降水的时空变化[J].生态环境学报, 18(3):957-959.
[29]Ni C C, Li G P, Xiong X Z, 2013. Validation of the applicability of AIRS data in Sichuan-Tibet region of China[J]. J Mountain Sci, 31(6):656-663. DOI:10.16089/j. cnki. 1008-2786.2013.06.013.<br/>倪成诚, 李国平, 熊效振, 2013. AIRS资料在川藏地区适用性的验证[J].山地学报, 31(6):656-663.
[30]Wan Y X, Zhang Y, Zhang J W, et al, 2017. Influence of sensible heat on planetary boundary layer height in East Asia[J]. Plateau Meteor, 36(1):173-182. DOI:10.7522/j. issn. 1000-0534.2016.00001.<br/>万云霞, 张宇, 张瑾文, 等, 2017.感热变化对东亚地区大气边界层高度的影响[J].高原气象, 36(1):173-182.
[31]Wei Z G, Wen J, Lü S H, et al, 2005. A primary field experiment of land-atmosphere interaction over the Loess Plateau and its ground surface energy in clear day[J]. Plateau Meteor, 24(4):545-555.<br/>韦志刚, 文军, 吕世华, 等, 2005.黄土高原陆-气相互作用预试验及其晴天地表能量特征分析[J].高原气象, 24(4):545-555.
[32]Zhan R F, Li J P, 2008. Validation and characteristics of upper tropospheric water vapor over the Tibetan Plateau from AIRS satellite retrieval[J]. Chinese J Atmos Sci, 32(2):242-260. DOI:10.3878/j. issn. 1006-9895.2008.02.05.<br/>占瑞芬, 李建平, 2008.青藏高原地区大气红外探测器(AIRS)资料质量检验及揭示的上对流层水汽特征[J].大气科学, 32(2):242-260.
[33]Zhang Q, Wang S, 2008. On land surface processes and its experimental study in Chinese Loess Plateau[J]. Adv Earth Sci, 23(2):167-173. DOI:10.11867/j. issn. 1001-8166.2008.02.0167.<br/>张强, 王胜, 2008.关于黄土高原陆面过程及其观测试验研究[J].地球科学进展, 23(2):167-173.
[34]Zhang Q, Zhang J, Qiao J, et al, 2011. Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China[J]. Sci China Earth Sci, 41(9):1365-1374. DOI:10.1007/s11430-011-4207-0.<br/>张强, 张杰, 乔娟, 等, 2011.我国干旱区深厚大气边界层与陆面热力过程的关系研究[J].中国科学:地球科学, 41(9):1365-1374.
[35]Zhao C L, Lü S H, Han B, et al, 2016. Relationship between the convective boundary layer and residual layer over BadainJaran desert in summer[J]. Plateau Meteor, 35(4):1004-1014. DOI:10.7522/j. issn. 1000-0534.2015.00080.<br/>赵采玲, 吕世华, 韩博, 等, 2016.夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究[J].高原气象, 35(4):1004-1014.