论文

新疆西部一次极端暴雨事件的成因分析

  • 曾勇 ,
  • 杨莲梅
展开
  • 中国气象局乌鲁木齐沙漠气象研究所, 新疆 乌鲁木齐 830002;中亚大气科学研究中心, 新疆 乌鲁木齐 830002

收稿日期: 2017-10-18

  网络出版日期: 2018-10-28

基金资助

国家自然科学基金项目(41565003);科技部公益性行业科研专项(GYHY201506009);国家自然科学基金国际合作项目(41661144024)

Analysis on the Causes of an Extreme Rainfall Event in the West of Xinjiang

  • ZENG Yong ,
  • YANG Lianmei
Expand
  • Institute of Desert and Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China;Center for central Asia Atmosphere Science Research, Urumqi 830002, Xinjiang, China

Received date: 2017-10-18

  Online published: 2018-10-28

摘要

利用常规观测、FY-2G、地面加密自动站和NCEP/NCAR(0.25°×0.25°)再分析资料,对2016年7月31日至8月1日新疆西部出现的一次极端特大暴雨过程进行分析。结果表明:暴雨发生在南亚高压单体型和"两脊一槽"稳定环流形势下,暴雨区位于200 hPa高空西南急流入口区右侧、700 hPa低空偏东急流前部、500 hPa偏南急流及700 hPa辐合线附近。除中亚低槽自身携带的水汽外,在极为有利的高、中、低纬环流系统配合下孟加拉湾、南海和西太平洋向暴雨区输送的丰沛水汽也是此次极端特大暴雨的重要水汽来源。暴雨区西、东、南边界水汽输入均起着重要作用,尤其是西边界和东边界,占水汽输入总量的78.4%。暴雨区上空高低空急流的配合以及纬向风的水平切变和经向风的垂直切变为暴雨区辐合上升运动和中尺度系统的产生和发展提供有利条件。中尺度对流云团生成后在引导气流的作用下不断向北移动发展,是造成暴雨的直接系统。发展、移动的低空急流、切变线、风场辐合线和地形辐合线及自天山迎风坡向北分布的多个具有强上升支的中尺度垂直环流不断将水汽和能量向上输送,经500 hPa槽前强偏南气流向北输送至暴雨区上空。中低层暖平流、风切变和天山地形对天山迎风坡暴雨中尺度系统的产生和向上强烈发展有重要的作用。

本文引用格式

曾勇 , 杨莲梅 . 新疆西部一次极端暴雨事件的成因分析[J]. 高原气象, 2018 , 37(5) : 1220 -1232 . DOI: 10.7522/j.issn.1000-0534.2018.00014

Abstract

Based on the conventional observational data, the TBB data of FY-2G satellite, the data of ground encrypted automatic weather stations and the NCEP/NCAR reanalysis data with 0.25°×0.25° spatial resolution, the cause of an extreme torrential rainstorm occurred in the West of Xinjiang from 31 July to 1 August 2016 was studied.The results are as follows:Stable circulation of "two ridges one trough" at 500 hPa and monomorphic South Asia high pressure at 100 hPa were the weather background of the rainstorm, rainstorm area was located in the right side of the entrance area of southwest jet at 200 hPa, the front of low-level east jet at 700 hPa, nearby of southerly jet at 500 hPa and the convergence line at 700 hPa.The water vapor source of the extreme heavy rain were Central Asia low trough carried its own water vapor and low latitude Baya Bay, the South China Sea and the Western Pacific Ocean transporting to the rainstorm area rich water vapor under the extremely advantageous match of the high, medium and low latitude circulation system.Water vapor importations that from the west border, east border and south border played an important role in the rainstorm process, especially the western boundary and the eastern boundary, accounting for 78.4% of the total water vapor input.The match of the high altitude jet and the low altitude jet and the horizontal shear of the meridional wind and the vertical shear of the zonal wind provided favorable conditions for the generation and development of the mesoscale systems of the rainstorm and the convergence rising movement in the rainstorm area.After the formation of the mesoscale convective cloud, moving and developing northward continuously under the action of the pilot airflow, which were the direct systems of heavy rain.Developmental and moving the low-level jet, the shear line, the wind field convergence line and the terrain convergence line and a number of strong ascending branch of the multiple mesoscale vertical circulations from the Tianshan windward slope to distributed northward constantly transported the water vapor and the energy upwards, which were transported northward to the rainstorm area by strong southerly flow of the trough at 500 hPa.All of the warm advection, the wind shear of middle and low level and the Tianshan terrain played an important role in the generation and upward intensive development of the mesoscale system on the windward slope of the Tianshan terrain constantly.

参考文献

[1]Chen H Z, Ye C Z, Tang M H, 2013.Comparative analysis on mesoscale characteristics of two rainstorm processes in Hunan province in June 2011[J].Meteor Mon, 39(12):1580-1590.<br/>陈红专, 叶成志, 唐明晖, 2013.2011年6月湖南两次暴雨过程的中尺度特征对比分析[J].气象, 39(12):1580-1590.
[2]Chen C Y, Kong Q, Li R Q, 2012.Analysis of a major rainstorm in the North slope of Tianshan Mountains[J].Meteor Mon, 38(1):72-80.<br/>陈春艳, 孔期, 李如琦, 2012.天山北坡一次特大暴雨过程诊断分析[J].气象, 38(1):72-80.
[3]Cheng P, Liu D, Zhou Y Y, et al, 2015.Analysis of rain caused by shear line over Chongqing[J].Plateau Meteor, 34(1):82-92.DOI:10.7522/j.issn.1000-0534.2013.00162.<br/>陈鹏, 刘德, 周盈颖, 等, 2015.一次重庆特大暴雨过程的中尺度分析[J].高原气象, 34(1):82-92.
[4]Ding Y H, 1993.Study on the lasting heavy rainfalls over the Yangtze-Huaihe River basin in 1991[M].Beijing:China Meteorological Press, 249-254.<br/>丁一汇, 1993.1991年江淮流域持续性特大暴雨研究[M].北京:气象出版社, 249-254.
[5]Jang Y A, Bao B, Wang X, 2001.Analysis on heavy precipitation weather process in west of South Xinjiang[J].Xinjiang Meteor, 24(5):19-20.<br/>江远安, 包斌, 王旭, 2001.南疆西部大降水天气过程的统计分析[J].新疆气象, 24(5):19-20.
[6]Li X X, Shang D C, Shen Y, et al, 2013.Mesoscale analysis on two different intensity rainstorm processes in the east of Gansu province[J].Plateau Meteor, 32(5):1389-1399.DOI:10.7522/j.issn.1000-0534.2012.00130.<br/>李晓霞, 尚大成, 谌云, 等, 2013.甘肃陇南两次不同强度暴雨天气的中尺度特征分析[J].高原气象, 32(5):1389-1399.
[7]Li Q, Cui X P, Cao J, 2014.Observational analysis and numerical simulation of a heavy rainfall event in Sichuan Province[J].Chinese J Atmos Sci, 38(6):1095-1108.DOI:10.3878/j.issn.1006-9895.1401.13255.<br/>李琴, 崔晓鹏, 曹洁, 2014.四川地区一次暴雨过程的观测分析与数值模拟[J].大气科学, 38(6):1095-1108.
[8]Song W W, Li G P, 2016.Analysis and application of the two type vorticity on a heavy rainfall in Sichuan Basin[J].Plateau Meteor, 35(6):1464-1475.DOI:10.7522/j.issn.1000-0534.2015.00115.<br/>宋雯雯, 李国平, 2016.两类涡度矢量对四川盆地一次暴雨过程的分析应用[J].高原气象, 35(6):1464-1475.
[9]Tao S Y, 1980.Rainstorms in China[M].Beijing:Science Press.<br/>陶诗言, 1980.中国之暴雨[M].北京:科学出版社.
[10]Tao S Y, Ni Y Q, Zhao S X, et al, 2001.Study on formation mechanism and forecast of torrential rain in China in 1998[M].Beijing:China Meteorological Press.<br/>陶诗言, 倪允琪, 赵思雄, 等, 2001.1998夏季中国暴雨形成机理与预报研究[M].北京:气象出版社.
[11]Wu G X, Cai Y P, Tang X J, 1995.Mosit potential vorticity and slantwise vorticity development[J].Acta Meteor Sinica, 53(4):387-405.<br/>吴国雄, 蔡雅萍, 庄晓菁, 1995.湿位涡和倾斜涡度发展[J].气象学报, 53(4):387-405.
[12]Xiaokaiti D L T, Tang H, Li X, et al, 1997.Study on the vapor condition of "96·7" heavy rainfall in Xinjiang[J].Xinjiang Meteor, 20(1):8-11.<br/>肖开提·多莱特, 汤浩, 李霞, 等, 1997."96·7"新疆特大暴雨的水汽条件研究[J].新疆气象, 20(1):8-11.
[13]Yang L M, Zhang Y H, Tang H, 2012.Analyses on water vapor characteristics in three heavy rainstorm processes of Xinjiang in July 2007[J].Plateau Meteor, 31(4):202-209.<br/>杨莲梅, 张云惠, 汤浩, 2012.2007年7月新疆三次暴雨过程的水汽特征分析[J].高原气象, 31(4):963-973.
[14]Yang L M, 2003.Research on a case of heavy rain in Xinjiang from South Asia High abnormity[J].Meteor Mon, 29(8):21-25.<br/>杨莲梅, 2003.南亚高压突变引起的一次新疆暴雨天气研究[J].气象, 29(8):21-25.
[15]Yang L M, Zhang G X, 2004.Infrared satellite image analysis of severe convective rainstorm and hail in North Oasis of Aksu[J].J Arid Meteor, 22(3):22-25.<br/>杨莲梅, 张广兴, 2004.阿克苏北部绿洲强对流暴雨与冰雹红外云图特征对比分析[J].干旱气象, 22(3):22-25.
[16]Zhuang W, Liu L P, Wang N, 2006.Study on three-dimensional wind fields of mesoscale convective systems in Xinjiang[J].Quart J Appl Meteor, 17(4):444-451.<br/>庄薇, 刘黎平, 王楠, 2006.新疆地区一次对流性降水的三维中尺度风场研究[J].应用气象学报, 17(4):444-451.
[17]Zhao S X, Tao Z Y, Sun J H, et al, 2004.Study on the mechanism of the formation and development of heavy rainfall on the Meiyu Front in Yangtze River[M].Beijing:China Meteorology Press.<br/>赵思雄, 陶祖钰, 孙建华, 等, 2004.长江流域梅雨锋暴雨机理的分析研究[M].北京:气象出版社.
[18]Zhao Q Y, Fu C, Liu X W, et al, 2017.Characteristics of mesoscale system evolution of torrential rain in warm sector over Northwest China[J].Plateau Meteor, 36(3):697-704.DOI:10.7522/j.issn.1000-0534.2016.00140.<br/>赵庆云, 傅朝, 刘新伟, 等, 2017.西北东部暖区大暴雨中尺度系统演变特征[J].高原气象, 36(3):697-704.
[19]Zhao G X, Bo Y Q, Qiu G Q, et al, 2017.Observation analysis and numerical simulation about a heavy rain in the middle of Yellow River[J].Plateau Meteor, 36(2):436-454.DOI:10.7522/j.issn.1000-0534.2016.00093.<br/>赵桂香, 薄燕青, 邱贵强, 等, 2017.黄河中游一次大暴雨的观测分析与数值模拟[J].高原气象, 36(2):436-454.
[20]Zhou Y S, Liu L, Zhu K F, et al, 2014.Simulation and evolution characteristics of mesoscale systems occurring in Beijing on 21 July 2012[J].Chinese J Atmos Sci, 38(5):885-896.DOI:10.3878/j.issn.1006-9895.2013.13185.<br/>周玉淑, 刘璐, 朱科锋, 等, 2014.北京"7·21"特大暴雨过程中尺度系统的模拟及演变特征分析[J].大气科学, 38(5):885-896.
[21]Zhang Y X, Li Z T, Yao X X, 2015.Analysis on mesoscale system of torrential rain occurring over North China on 21 July 2012[J].Plateau Meteor, 34(1):202-209.DOI:10.7522/j.issn.1000-0534.2013.00096.<br/>张迎新, 李宗涛, 姚学祥, 2015.京津冀"7·21"暴雨过程的中尺度分析[J].高原气象, 34(1):202-209.
[22]Zhang J B, Deng Z F, 1987.A generality of rainfall in Xinjiang[M].Beijing:China Meteorological Press.<br/>张家宝, 邓子风, 1987.新疆降水概论[M].北京:气象出版社.
[23]Zhang Y H, Chen C Y, Yang L M, et al, 2013.Cause analysis on rare rainstorm in West of Southern Xinjiang[J].Plateau Meteor, 32(1):191-200.DOI:10.7522/j.issn.1000-0534.2012.00019.<br/>张云惠, 陈春艳, 杨莲梅, 等, 2013.南疆西部一次罕见暴雨过程的成因分析[J].高原气象, 32(1):191-200.
[24]Zhu Q G, Zhou W C, Zhang H X, 2001.Mechanism of the formation of torrential rain by coupled high/low level jets over the middle reaches of the Yangtze River[J].Journal of Nanjing Institute of Meteorology, 24 (3):308-314.<br/>朱乾根, 周伟灿, 张海霞, 2001.高低空急流耦合对长江中游强暴雨形成的机理研究[J].南京气象学院学报, 24(3):308-314.
[25]Zheng L L, Sun J H, 2016.The impact of vertical wind shear on the intensity and organizational mode of mesoscale convective systems using numerical experiments[J].Chinese J Atmos Sci, 40(2):324-340, DOI:10.3878/j.issn.1006-9895.1505.14311.<br/>郑淋淋, 孙建华, 2016.风切变对中尺度对流系统强度和组织结构影响的数值试验[J].大气科学, 40(2):324-340.
[26]Zeng Y, Yang L M, 2017a.Mesoscale characteristic analysis of a severe convective weather with torrential rain in the West of Southern Xinjiang[J].J Arid meteor, 35(3):475-484.<br/>曾勇, 杨莲梅, 2017a.南疆西部一次暴雨强对流过程的中尺度特征分析[J].干旱气象, 35(3):475-484.
[27]Zeng Y, Yang L M, 2017b.Comparative analysis on mesoscale characteristics of two severe short-time precipitation events in the west of southern Xinjiang[J].Torrential Rain Disaster, 36(5):410-421.DOI:10.3969/j.issn.1004-9045.2017.05.003.<br/>曾勇, 杨莲梅, 2017b.南疆西部两次短时强降水天气中尺度特征对比分析[J].暴雨灾害, 36(5):410-421.
文章导航

/