论文

一次江淮气旋极端雨雪过程的云系特征和成因分析

  • 赵宇 ,
  • 蓝欣 ,
  • 杨成芳
展开
  • 南京信息工程大学气象灾害教育部重点实验室/气象灾害预报预警与评估协同创新中心/气候与环境变化国际合作联合实验室, 江苏 南京 210044;海南省三亚市气象局, 海南 三亚 572000;山东省气象台, 山东 济南 250031

收稿日期: 2017-09-14

  网络出版日期: 2018-10-28

基金资助

国家自然科学基金项目(41475038,41475090)

Analysis of the Cloud Characteristic and the Mechanism of an Extreme Rainfall-snowfall Event Associated with Cyclones over Changjiang-Huaihe River Basin

  • ZHAO Yu ,
  • LAN Xin ,
  • YANG Chengfang
Expand
  • Key Laboratory of Meteorological Disaster of Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;Sanya Meteorological Bureau, Hainan Province, Sanya 572000, Hainan, China;Shandong Provincial Meteorological Observatory, Jinan 250031, Shandong, China

Received date: 2017-09-14

  Online published: 2018-10-28

摘要

2016年2月12日夜间至13日白天,受冷空气和江淮气旋影响,山东出现了一次极端雨雪天气过程,全省48个国家级气象站日降水突破同期历史记录。采用多种观测和NCEP/NCAR的1°×1°再分析资料分析了降水云系的演变特征、风场的中尺度特征和降水成因。结果表明:(1)雨雪过程不断有β中尺度云团从苏皖移入山东,降水主要由4个β中尺度云团造成;江淮气旋逗点头云系由4条带状回波发展形成,暖锋云系以层状云为主,其间有零散的对流云,逗点云尾部的冷锋云系形成初期多为对流性,入海后对流性减弱;气旋形成后雷达回波发生气旋式旋转、拉长,形成多条中尺度强雨带。(2)水汽条件极为有利,来自西南和东南两个方向的低空急流持续输送充沛的水汽,降雨阶段还有来自东南方向超低空急流的水汽输送,降雪阶段边界层水汽输送微弱。(3)降雨阶段,低层为浅薄的东北风冷垫;降雪阶段,东北风冷垫较降雨阶段深厚得多。东北风冷垫上东南风层变薄直至减弱消失是雨雪相态转换的标志,强雨雪都发生在偏南低空急流最强盛时段。(4)低层低涡前部东北风和东南风的切变辐合、暖平流、暖锋锋生以及条件性不稳定能量释放强迫上升运动造成强雨雪。风廓线雷达和激光雨滴谱仪的观测是降水相态短时临近预报的有益判别资料。

本文引用格式

赵宇 , 蓝欣 , 杨成芳 . 一次江淮气旋极端雨雪过程的云系特征和成因分析[J]. 高原气象, 2018 , 37(5) : 1325 -1340 . DOI: 10.7522/j.issn.1000-0534.2018.00024

Abstract

An extreme rainfall-snowfall event that occurred in Shandong province from 12 to 13 February 2016 was contributed to the Cyclones over Changjiang-Huaihe River Basin. The precipitation of 48 stations in Shandong province broke the historic record of the same period. The characteristics of the cloud evolution and mesoscale wind field as well as precipitation mechanism were analyzed by using multiple observation and NCEP/NCAR 1°×1° reanalysis data. The main results show that:(1) Meso-β cloud mass constantly moved northeastward into Shandong province from Jiangsu and Anhui provinces, and the precipitation was contributed to four meso-β cloud mass. The comma head of Cyclones over Changjiang-Huaihe River Basin developed from four banded echoes. In the initial phase of the cyclone, the warm front cloud was dominated by stratiform clouds with scattered convective clouds, while the cold front clouds in the tail of comma cloud were more convective and then weakened after moving into the sea. When the cyclone formed, the radar echo had a cyclonic rotation and elongation, forming a number of strong mesoscale rain bands. (2) The water vapor conditions were very helpful to the precipitation. The low-level jet originating from southwesterly path and southeasterly path transported ample moisture. During the rainfall period, there was moisture transmission by the southeasterly ultra-low level jet, while the transmission was weak in the boundary layer in the snowfall period. (3) The northeast cold air mattress in the low level was shallow in the rainfall period, while it was much thicker in the snowfall period. The southeaster layer above the cold mattress experienced attenuation to becoming invisible, which is a sign of the phase transition from rain to snow. Both heavy rainfall and snowfall occurred in the strongest period of southerly low-level jet. (4) The convergence between northeast and southeast winds near the shear line in front of the low vortex, warm advection, warm frontogenesis and the release of the conditionally unstable energy, are the forcing mechanism of ascending motion, which result in heavy precipitation. The observations of wind profile radar and laser raindrop spectrograph are helpful to judge the precipitation phase in weather forecast.

参考文献

[1]Bosart L F, 1981. The presidents' day snowstorm of 18-19 February 1979:a subsynoptic-scale event[J]. Mon Wea Rev, 109(7):1542-1566.
[2]Draxler R R, Hess G D, 1998. An overview of the HYSPLIT_4 modeling system for trajectories dispersion and deposition[J]. Aust Meteor Mag, 47:295-308.
[3]Martin J E, 1998. The structure and evolution of a continental winter cyclone. Part Ⅰ:Frontal structure and the occlusion process[J]. Mon Wea Rev, 126:303-328.
[4]Marwitz J D, Toth J, 1993. A case study of heavy snowfall in Oklahoma[J]. Mon Wea Rev, 121:648-661.
[5]Novak D R, Bosart L F, Keyser D, et al, 2004. An observational study of cold season-banded precipitation in northeast U. S. cyclones[J]. Wea Forecasting, 19:993-1010.
[6]Novak D R, Colle B A, Aiyyer A R, 2010. Evolution of mesoscale precipitation band environments within the comma head of northeast U. S. cyclones[J]. Mon Wea Rev, 138(6):2354-2374.
[7]Rauber R M, Macomber M K, Plummer D M, et al, 2014a. Finescale radar and airmass structure of the comma head of a continental winter cyclone:the role of three airstreams[J]. Mon Wea Rev, 142(11):4207-4229.
[8]Rauber R M, Wegman J, Plummer D M, et al, 2014b. Stability and charging characteristics of the comma head region of continental winter cyclones[J]. J Atmos Sci, 71(5):1559-1582.
[9]Schultz M D, Doswell C A, 1999. Conceptual models of upper-level frontogenesis in south-westerly and northwesterly flow[J]. Quart J Roy Meteor Soc, 125, 2535-2562.
[10]Stein A F, Draxler R R, Rolph G D, et al, 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system[J]. Bull Amer Meteor Soc, 96(12):2059-2077.
[11]Uccellini L W, Keyser D, 1985. The presidents' day cyclone of 1819 February 1979:influence of upstream trough amplication and associated tropopause folding on rapid cyclogenesis[J]. Mon Wea Rev, 113:962-988.
[12]Wetzel S W, Martin J E, 2001. An operational ingredients-based methodology for forecasting midlatitude winter season precipitation[J]. Wea Forecasting, 16(1):156-167.
[13]Gao S Y, Sun L Q, Liu T W, et al, 2009. Diagnostic analysis of an extraordinarily severe snowstorm event in Liaoning province[J]. Meteor Sci Technol, 37(2):175-180.<br/>高松影, 孙连强, 刘天伟, 等, 2009.辽宁省特大暴风雪(雨)极端天气个例诊断分析[J].气象科技, 37(2):175-180.
[14]Hu S Q, Cao Z C, Chen T, 2017. Diagnostic analysis of a historical extreme snow process in south of Shandong Province[J]. Plateau Meteor, 36(4):984-992. DOI:10.7522/j.issn. 1000-0534.2016.00134.<br/>胡顺起, 曹张驰, 陈滔, 2017.山东省南部一次极端特大暴雪过程诊断分析[J].高原气象, 36(4):984-992.
[15]Jiang Z H, Liang Z R, Liu Z Y, et al, 2011. A diagnostic study of water vapor transport and budget during heavy precipitation over the Huaihe river basin in 2007[J]. Chinese J Atmos Sci, 35(2):361-372.<br/>江志红, 梁卓然, 刘征宇, 等, 2011.2007年淮河流域强降水过程的水汽输送特征分析[J].大气科学, 35(2):361-372.
[16]Liu N W, Qi L L, Han J W, 2009. The analyses of an unusual snowstorm caused by the northbound vortex over Liaoning province in China[J]. Chinese J Atmos Sci, 33(2):275-284.<br/>刘宁微, 齐琳琳, 韩江文, 2009.北上低涡引发辽宁历史罕见暴雪天气过程的分析[J].大气科学, 33(2):275-284.
[17]Sun D G, Huang B F, Xue Y B, et al, 2016. Analysis on the difference of airflow structure of three ocean-effect snowstorms in Shandong Peninsula[J]. Plateau Meteor, 35(3):800-809. DOI:10.7522/j.issn. 1000-0534.2015.00017.<br/>孙殿光, 黄本峰, 薛?波, 等, 2016.山东半岛三次冷流暴雪气流结构差异性分析[J].高原气象, 35(3):800-809.
[18]Sun J H, Wang H J, Wei J, et al, 2016. The sources and transportation of water vapor in persistent heavy rainfall events in the Yangtze-Huaihe river valley[J]. Acta Meteor Sinica, 74(4):542-555. DOI:10.11676/qxxb2016.047.<br/>孙建华, 汪汇洁, 卫捷, 等, 2016.江淮区域持续性暴雨过程的水汽源地和输送特征[J].气象学报, 74(4):542-555.
[19]Sun Y H, Li Z C, Shou S W, 2012. A mesoscale analysis of the snowstorm event of 3-5 March 2007 in Liaoning province[J]. Acta Meteor Sinica, 70(5):936-948.<br/>孙艳辉, 李泽椿, 寿绍文, 2012.2007年3月3-5日辽宁省暴雪和大风天气的中尺度分析[J].气象学报, 70(5):936-948.
[20]Sun Y H, Li Z C, Shou S W, 2015. An investigation into the features and effects of the mesoscale gravity waves as in a snowstorm event[J]. Acta Meteor Sininca, 73(4):697-710. DOI:10.11676/qxxb2015.052.<br/>孙艳辉, 李泽椿, 寿绍文, 2015.一次暴风雪过程中的中尺度重力波特征及其影响[J].气象学报, 73(4):697-710.
[21]Yan L F, Yang C F, 2014. Book of disaster weather forecasting technology in Shandong Province[M]. Beijing:China Meteorological Press, 182-183.<br/>阎丽凤, 杨成芳, 2014.山东省灾害性天气预报技术手册[M].北京:气象出版社, 182-183.
[22]Yang C F, Jiang P, Zhang S L, et al, 2013. Analysis on temperature of precipitation types in cold seasons in Shandong[J]. Meteor Mon, 39(3):355-361.<br/>杨成芳, 姜鹏, 张少林, 等, 2013.山东冬半年降水相态的温度特征统计分析[J].气象, 39(3):355-361.
[23]Yang C F, Zhou S L, Liu C, et al, 2015. Case study of the cause and the dynamic structure for a small scale snowstorm event associated with a cyclone[J]. Acta Meteor Sinica, 73(6):1039-1051. DOI:10.11676/qxxb2015.082.<br/>杨成芳, 周淑玲, 刘畅, 等, 2015.一次入海气旋局地暴雪的结构演变及成因观测分析[J].气象学报, 73(6):1039-1051.
[24]Yang L M, Liu W, 2016. Cause analysis of persistent heavy snow processes in the Northern Xinjiang[J]. Plateau Meteor, 35(2):507-519. DOI:10.7522/j.issn. 1000-0534.2014.00161.<br/>杨莲梅, 刘雯, 2016.新疆北部持续性暴雪过程成因分析[J].高原气象, 35(2):507-519.
[25]杨晓霞, 吴炜, 万明波, 等, 2012.山东省两次暴雪天气的对比分析[J].气象, 38(7):868-876.
[26]Yang X X, Wu W, Wan M B, et al, 2016. A comparative analysis of two snowstorms in Shandong Province[J]. Meteor Mon, 38(7):868-876.
[27]Yi X Y, Li Z C, Zhu L L, et al, 2010. A case study on dynamic and thermal structures and mechanism of <i>β</i>-mesoscale snowstorm[J]. Plateau Meteor, 29(1):175-186.<br/>易笑园, 李泽椿, 朱磊磊, 等, 2010.一次<i>β</i>-中尺度暴风雪的成因及动力热力结构[J].高原气象, 29(1):175-186.
[28]Zheng L N, Jin J, 2012. Analysis on formation mechanism of rare thundersnow phenomenon in Shandong on 28 February 2010[J]. Plateau Meteor, 31(4):1151-1157.<br/>郑丽娜, 靳军, 2012. "2·28"山东罕见"雷打雪"现象形成机制分析[J].高原气象, 31(4):1151-1157.
[29]Zhou X S, Yang C F, Sun X C, 2013. Comparative analyses on two early spring snowstorm processes[J]. Plateau Meteor, 32(2):446-455. DOI:10.7522/j.issn. 1000-0534.2012.00043.<br/>周雪松, 杨成芳, 孙兴池, 2013.两次早春暴雪过程的对比分析[J].高原气象, 32(2):446-455.
文章导航

/