[1]Ansmann A, Seifert P, Tesche M, et al, 2012. Profiling of fine and coarse particle mass:Case studies of Saharan dust and Eyjafjallaj?kull/Grimsv?tn volcanic plumes[J]. Atmos Chem Phys, 12(20):9399-9415. DOI:10.5194/acp-12-9399-2012.
[2]Ansmann A, Tesche M, Seifert P, et al, 2011. Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallaj?kull volcano in 2010[J]. J Geophys Res, 116 (D20):D00U02. DOI:10.1029/2010jd015567.
[3]Burton S, Hair J, Kahnert M, et al, 2015. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley Airborne High Spectral Resolution Lidar[J]. Atmos Chem Phys, 15(23):13453-13473. DOI:10.5194/acp-15-13453-2015.
[4]Cairo F, Di Donfrancesco G, Adriani A, et al, 1999. Comparison of various linear depolarization parameters measured by lidar[J]. Appl Opt, 38(21):4425-4432. DOI:10.1364/AO. 38.004425.
[5]Cattrall C, Reagan J, Thome K, et al, 2005. Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected aerosol robotic network locations[J]. J Geophys Res, 110(D10):D10S11. DOI:10.1029/2004JD005124.
[6]Fernald F G, 1984. Analysis of atmospheric lidar observations:some comments[J]. Appl Opt, 23(5):652-653. DOI:10.1364/AO. 23.000652.
[7]Flynn C J, Mendoza A, Zheng Y, et al, 2007. Novel polarization-sensitive micropulse lidar measurement technique[J]. Opt Express, 15(6):2785-2790. DOI:10.1364/oe. 15.002785.
[8]Freudenthaler V, Esselborn M, Wiegner M, et al, 2009. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006[J]. Tellus B, 61(1):165-179. DOI:10.1111/j. 1600-0889.2008.00396.x.
[9]Gro? S, Tesche M, Freudenthaler V, et al, 2011. Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2[J]. Tellus B, 63(4):706-724. DOI:10.1111/j. 1600-0889.2011.00556.x.
[10]Huang J, Fu Q, Su J, et al, 2009. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J]. Atmos Chem Phys, 9(12):4011-4021. DOI:10.5194/acp-9-4011-2009.
[11]Huang J, Minnis P, Chen B, et al, 2008. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX[J]. J Geophys Res, 113(D23):D23212. DOI:10.1029/2008JD010620.
[12]Huang J, Wang T, Wang W, et al, 2014. Climate effects of dust aerosols over East Asian arid and semiarid regions[J]. J Geophys Res, 119(19):11398-11416. DOI:10.1002/2014JD021796.
[13]Huang Z, Huang J, Bi J, et al, 2010a. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U. S. joint dust field experiment[J]. J Geophys Res:Atmospheres, 115(D7):1307-1314. DOI:10.1029/2009JD013273.
[14]Huang Z, Sugimoto N, Huang J, et al, 2010b. Comparison of depolarization ratio measurements with micro-pulse lidar and a linear polarization lidar in Lanzhou, China[C]//Proc. 25th Int. Laser Radar Conf., St. Petersburg, Russia. 2010: 528-531.
[15]Kuzmanoski M, Box M A, Box G P, et al, 2007. Aerosol properties computed from aircraft-based observations during the ACE-Asia campaign:1. Aerosol size distributions retrieved from optical thickness measurements[J]. Aerosol Sci Technol, 41(2), 202-216. DOI:10.1080/02786820601146977.
[16]Li Z Q, Lau W K M, Ramanathan V, et al, 2016. Aerosol and monsoon climate interactions over Asia[J]. Rev Geophys, 54. DOI:10.1002/2015RG000500.
[17]Mamouri R E, Ansmann A, 2014. Fine and coarse dust separation with polarization lidar[J]. Atmos Meas Tech, 7(11):3717-3735. DOI:10.5194/amt-7-3717-2014.
[18]Mamouri R E, Ansmann A, 2017. Potential of polarization/raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles[J]. Atmos Meas Tech, 10(9):1-41. DOI:10.5194/amt-10-3403-2017.
[19]Murayama T, Müller D, Wada K, et al, 2004. Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003[J]. Geophys Res Lett, 31:L23103. DOI:10.1029/2004GL021105.
[20]Nemuc A, Vasilescu J, Talianu C, et al, 2013. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations[J]. Atmos Meas Tech, 6(11):3243-3243. DOI:10.5194/amt-6-3243-2013.
[21]Papayannis A, Amiridis V, Mona L, et al, 2008. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002)[J]. J Geophys Res, 113(D10):D10204. DOI:10.1029/2007jd009028.
[22]Powell D M, Reagan J A, Rubio M A, et al, 2000. Ace-2 multiple angle micro-pulse lidar observations from las galletas, tenerife, canary islands[J]. Tellus B, 52(2):652-661. DOI:10.3402/tellusb.v52i2.17125.
[23]Rosenfeld D, 2000. Suppression of rain and snow by urban and industrial air pollution[J]. Science, 287:1793-1796. DOI:10.1126/science. 287.5459.1793.
[24]Sakai T, Nagai T, Nakazato M, et al, 2003. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba[J]. Appl Opt, 42(36):7103-7116. DOI:10.1364/AO. 42.007103.
[25]Von der Gathen P, 1995. Aerosol extinction and backscatter profiles by means of a multiwavelength Raman lidar:a new method without a priori assumptions[J]. Appl Opt, 34(3):463-466. DOI:10.1364/AO. 34.000463.
[26]Wang T H, Huang J P, 2009:A method for estimating optical properties of dusty cloud[J]. China Opt Lett, 7(5):368-372. DOI:10.3788/COL20090705.0368.
[27]Welton E J, Voss K J, Gordon H R, et al, 2000. Ground-based lidar measurements of aerosols during ace-2:instrument description, results, and comparisons with other ground-based and airborne measurements[J]. Tellus B, 52(2):636-651. DOI:10.1034/j. 1600-0889.2000.00025.x.
[28]Winker D M, Vaughan M A, Omar A, et al, 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms[J]. J Atmos Ocean Tech, 26(11):2310-2323. DOI:10.1175/2009JTECHA1281.1.
[29]Yu H, Chin M, Bian H, et al, 2015. Quantification of trans-Atlantic dust transport from seven-year (2007-2013) record of CALIPSO lidar measurements[J]. Remote Sens Environ, 159:232-249. DOI:10.1016/j.rse. 2014.12.010.
[30]Cao X J, Zhang L, Zhou B, et al, 2009. Lidar measurement of dust aerosol radiative property over Lanzhou[J]. Plateau Meteor, 28(5):1115-1120.<br/>曹贤洁, 张镭, 周碧, 等, 2009.利用激光雷达观测兰州沙尘气溶胶辐射特性[J].高原气象, 28(5):1115-1120.
[31]Hao J F, Zhang G W, Wang X J, et al, 2017. Analysis of meteorology detection data during a heavy pollution event[J]. Plateau Meteor, 36(5):1404-1411. DOI:10.7522/j.issn. 1000-0534.2016.00118.<br/>郝巨飞, 张功文, 王晓娟, 等, 2017.一次环境大气重污染过程的监测分析[J].高原气象, 36(5):1404-1411.
[32]He Y, 2015. Dust aerosols detected using a polarization Lidar and CALIPSO over Wuhan[D], Wuhan: Wuhan University, 1-105.<br/>何芸, 2015.基于偏振激光雷达和CALIPSO对武汉上空沙尘气溶胶的观测研究[D].武汉: 武汉大学, 1-105.
[33]Liu L C, Shen Z B, Wang T, et al, 2005. Observation study on mass concentration of dust aerosols in Dunhuang[J]. Plateau Meteor, 24(5):765-771.<br/>刘立超, 沈志宝, 王涛, 等, 2005.敦煌地区沙尘气溶胶质量浓度的观测研究[J].高原气象, 24(5):765-771.
[34]Ru J B, Wang T H, Li J M, et al, 2018. A study on the characteristics of dust aerosol in both clear-sky and above-cloud conditions over East Asia[J]. J Desert Res, 38(2):372-383.<br/>茹建波, 王天河, 李积明, 等, 2018.东亚沙尘源区晴空和云上沙尘气溶胶特征研究[J].中国沙漠, 38(2):372-383.
[35]Yang F Y, Zhang N, Zhu L F, et al, 2016. Comparison of the mixing layer height determination methods using Lidar and Microwave Radiometer[J]. Plateau Meteor, 35(4):1102-1111. DOI:10.7522/j.issn. 1000-0534.2015.00045.<br/>杨富燕, 张宁, 朱莲芳, 等, 2016.基于激光雷达和微波辐射计观测确定混合层高度方法的比较[J].高原气象, 35(4):1102-1111.
[36]Yi N N, Zhang L, Liu W P, et al, 2017. Optical characteristics and radiative effects of atmospheric aerosol over Northwest China[J]. Chinese J Atmos Sci, 41(2):409-420.<br/>衣娜娜, 张镭, 刘卫平, 等, 2017.西北地区气溶胶光学特性及辐射影响[J].大气科学, 41(2):409-420.
[37]Zhang J, Tang C G, 2012. Vertical distribution structure and characeristic of aerosol over arid region in a dust proces of spring[J]. Plateau Meteor, 31(1):156-166.<br/>张杰, 唐从国, 2012.干旱区一次春季沙尘过程的大气气溶胶垂直分布结构及其特征[J].高原气象, 31(1):156-166.
[38]周碧, 张镭, 曹贤洁, 等, 2011.利用激光雷达资料分析兰州远郊气溶胶光学特性[J].高原气象, 30(4):1011-1017.
[39]Zhou B, Zhang L, Cao X J, et al, Analyses on atomospheric aerosol optical properties with Lidar data in Lanzhou suburb[J]. Plateau Meteor, 30(4):1011-1017.