[1]Adeniyi M O, 2016. The consequences of the IPCC AR5 RCPs 4.5 and 8.5 climate change scenarios on precipitation in West Africa[J]. Climatic Change, 139(2):245-263.
[2]Akhter J, Das L, Deb A, 2016. CMIP5 ensemble-based spatial rainfall projection over homogeneous zones of India[J]. Climate Dyn, 49(5/6):1885-1916.
[3]Almazroui M, Islam M N, Al-Khalaf A K, et al, 2016. Best convective parameterization scheme within RegCM4 to downscale CMIP5 multi-model data for the CORDEX-MENA/Arab domain[J]. Theor Appl Climatol, 124(3/4):807-823.
[4]Andrys J, Kala J, Lyons T J, 2017. Regional climate projections of mean and extreme climate for the southwest of Western Australia (1970-1999 compared to 2030-2059)[J]. Climate Dyn, 48(5/6):1723-1747.
[5]Batista R J R, Gon?alves F L T, Rocha R P D, 2016. Present climate and future projections of the thermal comfort index for the metropolitan region of S?o Paulo, Brazil[J]. Climatic Change, 137(3/4):439-454.
[6]Beniston M, Stephenson D B, Christensen O B, et al, 2007. Future extreme events in European climate:An exploration of regional climate model projections[J]. Climatic Change, 81(1):71-95.
[7]Chen H P, Sun J Q, Chen X L, 2013. Future changes of drought and flood events in China under a global warming scenario[J]. Atmos Oceanic Sci Lett, 6(1):8-13.
[8]Déqué M, Rowell D P, Lüthi D, et al, 2007. An intercomparison of regional climate simulations for Europe:Assessing uncertainties in model projections[J]. Climatic Change, 81(1):53-70.
[9]Diallo I, Giorgi F, Stordal F, 2018. Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment[J]. Climate Dyn, 50(9/10):3397-3411.
[10]Dickinson R E, Errico R M, Giorgi F, et al, 1989. A regional climate model for the western United States[J]. Climatic Change, 15(3):383-422.
[11]Ding Y H, Shi X L, Liu Y M, et al, 2006. Multi-year simulations and experimental seasonal predictions for rainy seasons in China by using a nested regional climate model (RegCM_NCC). Part Ⅰ:Sensitivity Study[J]. Adv Atmos Sci, 23(4):487-503.
[12]Dosio A, 2016. Projection of temperature and heat waves for Africa with an ensemble of CORDEX Regional Climate Models[J]. Climate Dyn, 49(1/2):493-519.
[13]Edoardo B, Paola M, Myriam M, et al, 2017. Numerical simulation of the period 1971-2100 over the mediterranean area with a regional model, Scenario SRES-A1B[J]. Sustainability, 9(12):2192.
[14]Fotso-Nguemo T C, Vondou D A, Tchawoua C, et al, 2017. Assessment of simulated rainfall and temperature from the regional climate model REMO and future changes over Central Africa[J]. Climate Dyn, 48(11/12):3685-3705.
[15]Gao X J, Shi Y, Zhang D F, et al, 2012. Climate change in China in the 21<sup>st</sup> century as simulated by a high resolution regional climate model[J]. Chinses Sci Bull, 57(10):1188-1195.
[16]Giorgi F, 1990. Simulation of regional climate using a limited area model nested in a general circulation model[J]. J Climate, 3(9):941-964.
[17]Giorgi F, Bi X Q, Pal J S, 2004. Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961-1990)[J]. Climate Dyn, 23(7/8):839-858.
[18]Haeberli W, Beniston M, 1998. Climate change and its impacts on glaciers and permafrost in the Alps[J]. Ambio, 27(4):258-265.
[19]Hendrikx J, Hreinsson E ?, 2012. The potential impact of climate change on seasonal snow in New Zealand:Part Ⅱ-Industry vulnerability and future snowmaking potential[J]. Theor Appl Climatol, 110(4):619-630.
[20]IPCC, 2013a. Climate change 2013:Impacts, adaptation, and vulnerability. Part B:Regional aspects. Working group Ⅱ contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, United Kingdom and New York, NY, USA, 1199-1612.
[21]IPCC, 2013b. Climate change 2013:The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, United Kingdom and New York, NY, USA, 208-221.
[22]Jaczewski A, Brzóska B, Wibig J, 2015. Comparison of temperature indices for three IPCC SRES scenarios based on RegCM simulations for Poland in 2011-2030 period[J]. Meteorol Z, 24(1):99-106.
[23]James R, Washington R, 2013. Changes in African temperature and precipitation associated with degrees of global warming[J]. Climatic Change, 117(4):859-872.
[24]Jeong D I, Sushama L, Diro G T, et al, 2015. Projected changes to high temperature events for Canada based on a regional climate model ensemble[J]. Climate Dyn, 46(9-10):3163-3180.
[25]Kurihara K, Ishihara K, Sasaki H, et al, 2005. Projection of climatic change over Japan due to global warming by high-resolution regional climate model in MRI[J]. SOLA, 1(1):97-100.
[26]Lee S, Bae D H, Cho C H, 2013. Changes in future precipitation over South Korea using a global high-resolution climate model[J]. Asia-Pacific J Atmos Sci, 49(5):619-624.
[27]Lenaerts J T M, Vizcaino M, Fyke J, et al, 2016. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model[J]. Climate Dyn, 47(5/6):1367-1381.
[28]Li C E K, Fuhrmann C M, 2013. Climate of the Southeast USA:Past, present, and future[M]. Climate of the Southeast United States. Island Press/Center for Resource Economics, 845-854.
[29]Liang X Z, Kunkel K E, Samel A N, 2001. Development of a regional climate model for U. S. midwest applications. Part I:Sensitivity to buffer zone treatment[J]. J Climate, 14(23):4363-4378.
[30]Liu K, Jiang D B, Jian-Yong M A, 2012. Drought over China in the 21st Century:Results of RegCM3[J]. Atmos Oceanic Sci Lett, 5(6):509-513.
[31]Marengo J A, Ambrizzi T, Rocha R P D, et al, 2010. Future change of climate in South America in the late twenty-first century:intercomparison of scenarios from three regional climate models[J]. Climate Dyn, 35(6):1073-1097.
[32]Marengo J A, Torres RR, Alves L M, 2017. Drought in Northeast Brazil-past, present, and future[J]. Theor Appl Climatol, 129(3/4):1189-1200.
[33]Meleshko V P, Kattsov V M, Govorkova V A, et al, 2008. Climate of Russia in the 21st century. Part 3. Future climate changes calculated with an ensemble of coupled atmosphere-ocean general circulation CMIP3 models[J]. Russian Meteor Hydrol, 33(9):541-552.
[34]Mihailovi? D T, Dre?kovi? N, Arseni? I, et al, 2016. Impact of climate change on soil thermal and moisture regimes in Serbia:An analysis with data from regional climate simulations under SRES-A1B[J]. Sci Total Environ, 571(41):398-409.
[35]Nu?ez M N, Solman S A, Cabré M F, 2009. Regional climate change experiments over southern South America. Ⅱ:Climate change scenarios in the late twenty-first century[J]. Climate Dyn, 32(7-8):1081-1095.
[36]Ozturk T, Turp M T, Türke M, et al, 2016. Projected changes in temperature and precipitation climatology of central asia cordex region 8 by using regcm4.3. 5[J]. Atmos Res, 183:296-307.
[37]Pinto I, Lennard C, Tadross M, et al, 2016. Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models[J]. Climatic Change, 135(3/4):655-668.
[38]Przybylak R, 2016. Scenarios of the Arctic future climate[M]. The Climate of the Arctic. Springer International Publishing, 266-269.
[39]Saeed F, Almazroui M, Islam N, et al, 2017. Intensification of future heat waves in Pakistan:a study using CORDEX regional climate models ensemble[J]. Nat Hazards, 87(3):1635-1647.
[40]Sánchez E, Solman S, Remedio A R C, et al, 2015. Regional climate modelling in CLARIS-LPB:a concerted approach towards twenty-first century projections of regional temperature and precipitation over South America[J]. Climate Dyn, 45(7/8):2193-2212.
[41]Sanderson M G, Hemming D L, Betts R A, 2011. Regional temperature and precipitation changes under high-end (≥ 4℃)global warming[J]. Phil Trans R Soc A, 369(1934):85-98.
[42]Swain S, Hayhoe K, 2015. CMIP5 projected changes in spring and summer drought and wet conditions over North America[J]. Climate Dyn, 44(9/10):2737-2750.
[43]Thatcher M, Mcgregor J, Dix M, et al, 2015. A new approach for coupled regional climate modeling using more than 10, 000 cores[C]//International Symposium on Environmental Software Systems. Springer, Cham, 599-607.
[44]Tiwari P R, Kar S C, Mohanty U C, et al, 2015. The role of land surface schemes in the regional climate model(RegCM) for seasonal scale simulations over Western Himalaya[J]. Atmósfera, 28(2):129-142.
[45]Wang J X, Huang J K, Yang J, 2014. Overview of impacts of climate change and adaptation in China's agriculture[J]. Journal of Integrative Agriculture, 13(1):1-17.
[46]Xu J Y, Shi Y, Gao X J, et al, 2013. Projected changes in climate extremes over China in the 21st century from a high resolution regional climate model (RegCM3)[J]. Chinese Sci Bull, 58(12):1443-1452.
[47]Dong G T, Chen B D, Chen B M, et al, 2016. The improvement of predicting extreme heat event of Eastern China in summer 2013 through correcting lateral boundary condition of regional climate model[J]. J Meteor, 42(1):97-106.<br/>董广涛, 陈葆德, 陈伯民, 等, 2016.边界强迫场订正的区域气候模式对2013年夏季中国东部极端高温预测的改进试验[J].气象, 42(1):97-106.
[48]Han Z Y, Gao X J, Shi Y, et al, 2015. Development of Chinese high resolution land cover data for theRegCM4/CLM and its impact on regional climate simulation[J]. J Glaciol Geocryol, 37(4):857-866.<br/>韩振宇, 高学杰, 石英, 等, 2015.中国高精度土地覆盖数据在RegCM4/CLM模式中的引入及其对区域气候模拟影响的分析[J].冰川冻土, 37(4):857-866.
[49]Han Z Y, Zhou T J, Zou L W, 2016. Projected summer climate changes over South Asia based on the nested FGOALS/RegCM Model[J]. Climatic Environ Res, 21 (2):153-166.<br/>韩振宇, 周天军, 邹立维, 2016. FGOALS/RegCM动力降尺度对南亚夏季气候变化的预估[J].气候与环境研究, 21 (2):153-166.
[50]Liu Y J, Dai J H, Chen P F, et al, 2016. Temporal-spatial variation of climate factors in africa under representative concentration pathways scenario 4.5[J]. Geo-Inf Sci, 18(11):1522-1528.<br/>刘玉洁, 戴君虎, 陈鹏飞, 等, 2016.未来RCP4.5情景下非洲地区主要气候要素时空演变特征[J].地球信息科学学报, 18(11):1522-1528.
[51]Shi Q C, 2006. Report on future climate change from the UK[J]. China Water Resour, 4(21):52-53.<br/>石秋池, 2006.英国关于未来气候变化的报告[J].中国水利, (4):52-53.
[52]Wei X Q, Zuo H C, Wu L Y, et al, 2016. The impact of New ocean turbulence parameterization scheme introduced into RegCM4.3 climate model on the summer precipitation simulation in China[J]. Journal of Lanzhou University (Natural Sciences), 52(5):664-651.<br/>卫翔谦, 左洪超, 武利阳, 等, 2016. RegCM4.3气候模式引入新的海洋湍流参数化方案对中国夏季降水模拟的影响[J].兰州大学学报(自然科学版), 52(5):644-651.
[53]Wu J G, Lü J J, Ai L, 2009. The impacts of climate change on the biodiversity:Vulnerability and Adaptation[J]. Ecol Environ, 18(2):693-703.<br/>吴建国, 吕佳佳, 艾丽, 2009.气候变化对生物多样性的影响:脆弱性和适应[J].生态环境学报, 18(2):693-703.
[54]Xiong Z, 2004. The multiyear surface climatology of RIEMS over East Asia[J]. Climatic Environ Res, 9(2):28-37.<br/>熊喆, 2004.区域气候模式RIEMS对东亚气候的模拟[J].气候与环境研究, 9(2):28-37.
[55]Xu X Y, Wang Y F, 2016. Simulation of the effect of Qinghai-Xizang Plateau anomalous heating on the downstream flow from May to August by RegCM4.0[J]. Plateau Meteor, 35(5):1169-1181. DOI:10.7522/j.issn. 1000-0534.2015.00058.<br/>徐小玉, 王亚非, 2016.利用RegCM4.0模拟5-8月青藏高原异常加热的下游效应[J].高原气象, 35(5):1169-1181.
[56]Zhang D F, Han Z Y, Shi Y, 2017. Comparison of climate projection between the driving CSIRO-Mk3.6. 0 and the downscaling simulation of RegCM4.4 over China[J]. Adv Clim Chang Res, 13(6):557-568.<br/>张冬峰, 韩振宇, 石英, 2017. CSIRO-Mk3.6. 0模式及其驱动下RegCM4.4模式对中国气候变化的预估[J].气候变化研究进展, 13(6):557-568.
[57]Zhai Y J, Li Y H, Xu Y, 2016. Aridity change characteristics over northern region of China under RCPs scenario[J]. Plateau Meteor, 35(1):94-106. DOI:10.7522/j.issn. 1000-0534.2014.00078.<br/>翟颖佳, 李耀辉, 徐影, 2016. RCPs情景下中国北方地区干旱气候变化特征[J].高原气象, 35(1):94-106.
[58]Zong P S, Zhou J, 2017. Simulation on summer monsoon precipitation over eastern China by using regional spectral model[J]. J Meteor Sci, 37(1):101-109.<br/>宗培书, 周晶, 2017. RSM模式对中国东部夏季降水模拟能力的检验[J].气象科学, 37(1):101-109.