论文

一次副热带高压边缘突发性暴雨的锋生及水汽特征分析

  • 邱贵强 ,
  • 赵桂香 ,
  • 董春卿 ,
  • 王晓丽
展开
  • 山西省气象台, 山西 太原 030006

收稿日期: 2017-03-23

  网络出版日期: 2018-08-28

基金资助

国家自然科学基金项目(41475050);山西省气象局重点项目(SXKZDTQ20165201)

Frontogenesis and Moisture Characteristic Analysis on a Sudden Rainstorm at the Edge of Subtropical High

  • QIU Guiqiang ,
  • ZHAO Guixiang ,
  • DONG Chunqing ,
  • WANG Xiaoli
Expand
  • Shanxi Meteorological Observatory, Taiyuan 030006, Shanxi, China

Received date: 2017-03-23

  Online published: 2018-08-28

摘要

针对2010年7月31日夜间山西西南部一次业务模式出现较大预报偏差的西太平洋副热带高压(下称副高)边缘突发性暴雨天气过程,利用常规和降水加密观测资料、FY-2E卫星TBB数据以及中尺度模式WRF高分辨率数值模拟结果,诊断分析了暴雨的发生发展、锋生及锋生过程中的水汽演变特征。结果表明:此次突发性暴雨是由高空槽后干冷空气推动副高边缘暖湿气流所导致的一次锋生型强降水,β中尺度对流系统(meso-β circular convective system,MβCCS)是造成暴雨的直接影响系统,低层β中尺度涡旋的形成和发展为MβCCS的维持提供了有利的水汽辐合条件,地面冷锋及其附近中尺度辐合线是对流触发因子。锋生诊断表明,低层辐合、中层辐散的垂直结构导致对流层低层水平锋生、中层水平锋消,而低层强烈的上升运动使得强不稳定层结高度升高,从而引起对流层中层强垂直锋生发展,垂直锋生与水平锋生同时产生,且垂直锋生较水平锋生大一个量级,中低层强锋生和次级环流圈的出现与强降水的发生时间和位置对应较好,比较而言,倾斜项对总锋生贡献最大,辐合项贡献最小。中低层锋生的加强有利于低层水汽的辐合抬升,锋生过程中深厚的水汽饱和层的出现以及水汽含量向高空的凸起,对局地强降水的预报有明显的指示意义。另外,高空冷空气的强度、移动路径以及MβCCS的发展对判断此类强降水的发生和暴雨落区具有重要作用。

关键词: 暴雨; 锋生; 涡旋; 副高; MβCCS

本文引用格式

邱贵强 , 赵桂香 , 董春卿 , 王晓丽 . 一次副热带高压边缘突发性暴雨的锋生及水汽特征分析[J]. 高原气象, 2018 , 37(4) : 946 -957 . DOI: 10.7522/j.issn.1000-0534.2017.00059

Abstract

For the sudden rainstorm predicted with a large deviation by several operational models, which occurred at the edge of western Pacific subtropical high (WPSH) southwest of Shanxi province at night on 31 July 2010, the conventional observation, hourly precipitation, TBB data derived from FY-2E satellite and WRF model high resolution simulation results were used to analyze the evolution of rainstorm, frontogenesis and moisture characteristics. The results indicated that the sudden rainstorm was due to frontogenesis that caused by dry and cold air at the back of upper trough pushing the warm and moist air at the edge of WPSH. The meso-β circular convective system (MβCCS) led to the rainstorm directly. The formation and development of mesoscale-β vortex provided a favorable condition of moisture convergence to the maintenance of MβCCS. The surface cold front and nearby mesoscale convergence line triggered the convection develop. Frontogenesis diagnosis showed that the vertical structure of low-level convergence and middle-level divergence led to low-level horizontal frontogenesis and middle-level horizontal frontolysis in the troposphere. The strong ascending motion made the height of strong instability layer rise and thus led to strong middle-level vertical frontogenesis. The vertical and horizontal frontogenesis happened at the same time, but the vertical frontogenesis was an order of magnitude larger than the horizontal frontogenesis. The appearance of middle-and low-level strong frontogenesis and secondary circulation corresponded well with the time and the location of strong precipitation. In comparison, the tilting term contributed most to total frontogenesis, and the convergence term contributed least. The strength of middle-and low-level frontogenesis is beneficial to the rise of low-level moisture. In the process of frontogenesis, deep moisture saturation layer thickness and the water vapor content stretching to high-level have evident indication to the forecast of local strong precipitation. At last, the intensity and moving track of upper cold air and development of MβCCS are major points to determine the location of such type of rainstorm.

参考文献

[1]Chen G T J, Wang C C, Wang A H, 2007. A case study of subtropical frontogenesis during a blocking event[J]. Mon Wea Rev, 135(7):2588-2609.
[2]Jirak I L, Cotton W R, Mcanelly R L, 2003. Sattellite and radar survey of mesoscale convective system development[J]. Mon wea Rev, 131(10):2428-2449.
[3]Chang Y, Han J W, 2015. Chracteristics of rainstorm processes under the blocking pattern in Inner Mongolia[J]. Plateau Meteor, 34(3):741-752. DOI:10.7522/j.issn. 1000-0534.2014.00033.<br/>常煜, 韩经纬, 2015.一次阻塞形势下的内蒙古暴雨过程特征分析[J].高原气象, 34(3):741-752.
[4]Chen X H, Hu W, Zhou Y F, et al, 2009. TBB features of continuous torrential rain over Huaihe valley in summer of 2007[J]. Meteor Mon, 35(2):57-63.<br/>陈晓红, 胡雯, 周扬帆, 等, 2009.2007年汛期淮河流域连续性大暴雨TBB场分析[J].气象, 35(2):57-63.
[5]Cheng H X, Zhang H X, Zhang Y, et al, 2011. Analysis of one heavy rainstorm in Jincheng in August in 2010[J]. Journal of Anhui Agricultural Sciences, 39(31):19459-19462.<br/>程海霞, 张红霞, 张燕, 等, 2011.2010年8月晋城一次大暴雨天气过程分析[J].安徽农业科学, 39(31):19459-19462.
[6]Cui F E, Wang Y Q, Di L H, 2009. Formation mechanism of a low vortex heavy rain in Shanxi province[J]. Torrential Rain Disaster, 28(3):51-55.<br/>崔粉娥, 王咏青, 狄利华, 2009.山西一次低涡暴雨过程的成因分析[J].暴雨灾害, 28(3):51-55.
[7]Ding Y H, 2015. On the study of the unprecedented heavy rainfall in Henan province during 48 August 1975:Review and assessment[J]. Acta Meteor Sinica, 73(3):411-424.<br/>丁一汇, 2015.论河南"75·8"特大暴雨的研究:回顾与评述[J].气象学报, 73(3):411-424.
[8]Gao W Q, Zhou W C, Li Y E, 2012. Diagnostic analysis of moist potential vorticity for a rainstorm in North China[J]. J Meteor Environ, 27(1):1-6.<br/>高万泉, 周伟灿, 李玉娥, 2011.华北一次强对流暴雨的湿位涡诊断分析[J].气象与环境学报, 27(1):1-6.
[9]Guo Y L, Wang J Z, Li C Y, et al, 2014. Effect of frontogenesis on rainstorm in Hubei during meiyu period 2011[J]. Meteor Mon, 40(1):86-93.<br/>郭英莲, 王继竹, 李才媛, 等, 2014.锋生作用对2011年梅汛期湖北暴雨的影响[J].气象, 40(1):86-93.
[10]Hou R Q, Cheng L S, Feng W H, 2003. Diagnostic analysis of the helicity and kinetic energy for a low vortex of "98·7" extraordinary heavy rainfall[J]. Plateau Meteor, 22(2):202-208.<br/>侯瑞钦, 程麟生, 冯伍虎, 2003. "98·7"特大暴雨低涡的螺旋度和动能诊断分析[J].高原气象, 22(2):202-208.
[11]Li F, Zhou W, Zhang L J, et al, 2014. Analysis on the radar products on "6·23" heavy rainfall process in Beijing[J]. J Arid Meteor, 32(4):608-615.<br/>李峰, 周薇, 张乐坚, 等, 2014.北京"6·23"局地强对流天气的雷达产品特征分析[J].干旱气象, 32(4):608-615.
[12]Li J G, Ma Y Y, Jiang C L, et al, 2014. Cause of a local rainstorm in central Tianshan Mountain[J]. J Arid Meteor, 32(6):972-979.<br/>李建刚, 马玉英, 姜彩莲, 等, 2014.天山山区中部一次局地暴雨成因分析[J].干旱气象, 32(6):972-979.
[13]Li N, Ran L K, Zhou Y S, et al, 2013. Diagnosis of the frontogenesis and slantwise vorticity development caused by the deformation in the Beijing "7·21" torrential rainfall event[J]. Acta Meteor Sinica, 71(4):593-605.<br/>李娜, 冉令坤, 周玉淑, 等, 2013.北京"7·21"暴雨过程中变形场引起的锋生与倾斜涡度发展诊断分析[J].气象学报, 71(4):593-605.
[14]Li S S, Li G P, 2017. Diagnostic analysis based on wet Q-vector of a shear line with rain on the east side of Qinghai-Tibetan plateau under the saddle pattern circulation background field[J]. Plateau Meteor, 36(2):317-329. DOI:10.7522/j.issn. 1000-0534.2016.00025.<br/>李山山, 李国平, 2017.一次鞍型场环流背景下高原东部切变线降水的湿Q矢量诊断分析[J].高原气象, 36(2):317-329.
[15]Li Y E, Wang Y J, Li W J, et al, 2015. Composite analysis on features of low-level frontogenesis rainstorm[J]. J Meteor Sci, 35(2):223-229.<br/>李银娥, 王艳杰, 李武阶, 等, 2015.低层锋生型暴雨特征合成分析[J].气象科学, 35(2):223-229.
[16]Liu H W, Quan M L, Zhu Y X, et al, 2014. The role of frotogenesis and secondary circulation in maximum precipiation enhancement and maximum precipiation in a 21 July 2012 rain in Beijing[J]. J Trop Meteor, 30(5):911-920.<br/>刘海文, 全美兰, 朱玉祥, 等, 2014.锋生及其次级环流对北京2012·7·21最大降水增福和最大降水的影响[J].热带气象学报, 30(5):911-920.
[17]Meng W G, Dai G F, Zhang Y X, et al, 2012. Analysis and simulative study of the local frontogenesis and convection development over South China[J]. Acta Meteor Sinica, 70(3):387-401.<br/>蒙伟光, 戴光丰, 张艳霞, 等, 2012.华南局地锋生及对流系统发展的模拟分析研究[J].气象学报, 70(3):387-401.
[18]Song W W, Li G P, 2016. Analysis and application of the two type vorticity vectors on a heavy rainfall in Sichuan basin[J]. Plateau Meteor, 35(6):1464-1475. DOI:10.7522/j.issn. 1000-0534.2015.00115.<br/>宋雯雯, 李国平, 2016.两类涡度矢量对四川盆地一次暴雨过程的分析应用[J].高原气象, 35(6):1464-1475.
[19]Wang F C, Xu D B, Yao Y F, et al, 2016. Frontogenesis process and slantwise vorticity development of a rainstorm in the east Gansu[J]. Plateau Meteor, 35(2):419-431. DOI:10.7522/j.issn. 1000-0534.2014.00127.<br/>王伏村, 许东蓓, 姚延锋, 等, 2016.一次陇东大暴雨的锋生过程及倾斜涡度发展[J].高原气象, 35(2):419-431.
[20]Wang J Z, Ma S F, Ding Y H, 1996. Application of potential voricity theory to analysis of formative machanism of torrential rain[J]. J Appl Meteor Sci, 7(1):19-27.<br/>王建中, 马淑芬, 丁一汇, 1996.位涡在暴雨成因分析中的应用[J].应用气象学报, 7(1):19-27.
[21]Wang L R, Yang R Z, Li Z H, et al, 2009. Application of CINRAD 3D mosaic products in strong convective weather[J]. J Meteor Environ, 25(5):18-23.<br/>王丽荣, 杨荣珍, 李朝华, 等, 2009.多普勒雷达三维拼图资料在强对流天气监测中的应用[J].气象与环境学报, 25(5):18-23.
[22]Wang Z M, Ding Y H, Zhang Y X, et al, 2014. Analysis of convective-symmetric instabilities and frontogenesis in a convective rain band on the northwest edge of WPSH[J]. Chinese J Atmos Sci, 38(1):133-145.<br/>王宗敏, 丁一汇, 张迎新, 等, 2014.副高外围对流雨带中的对流-对称不稳定及锋生的诊断分析[J].大气科学, 38(1):133-145.
[23]Yang X, Li Y, Zhao Y Z, et al, 2014. Analysis of a brief torrential rain event in autumn in Xinjiang[J]. Plateau Meteor, 33(1):162-170. DOI:10.7522/j.issn. 1000-0534.2012.00170.<br/>杨霞, 李云, 赵逸舟, 等, 2014.新疆一次深秋局地短时大暴雨的成因分析[J].高原气象, 33(1):162-170.
[24]Zhang F H, Chen T, Yang S N, et al, 2014. Diagnosis of the frontogenesis and CSI features during a torrential rainfall event in winter[J]. Meteor Mon, 40(9):1048-1057.<br/>张芳华, 陈涛, 杨舒楠, 等, 2014.一次冬季暴雨过程中的锋生和条件对称不稳定分析[J].气象, 40(9):1048-1057.
[25]Zhang S L, Wang J, Zhou X S, et al, 2009. Causal analysis of a disater inducing rainstorm in Shandong province[J]. Meteor Sci Technol, 37(5):527-532.<br/>张少林, 王俊, 周雪松, 等, 2009.山东"7·18"致灾暴雨成因分析[J].气象科技, 37(5):527-532.
[26]Zhao G X, Cheng L S, 2006. Diagnostic analysis of a rare rainstorm process in mid-Shanxi in July 2001[J]. Plateau Meteor, 25 (6):1083-1091.<br/>赵桂香, 程麟生, 2006.2001年7月山西中部一次罕见暴雨过程的诊断分析[J].高原气象, 25(6):1083-1091.
[27]Zheng J, Sun S Q, Wu J, et al, 2014. Analysis on multi scale ambient field for short time severe torrential rain on meiyu front[J]. Meteor Mon, 40(5):570-579.<br/>郑婧, 孙素琴, 吴静, 等, 2014.梅雨锋短时大暴雨的多尺度环境场分析[J].气象, 40(5):570-579.
[28]Zhen X Z, Shou S W, Shen X Y, 2006. Physics parameters analysis of a heavy rainfall event[J]. Meteor Mon, 32(1):102-106.<br/>郑仙照, 寿绍文, 沈新勇, 2006.一次暴雨天气过程的物理量分析[J].气象, 32(1):102-106.
文章导航

/