论文

1980 -2016年青藏高原变暖时空特征及其可能影响原因

  • 魏莹 ,
  • 段克勤
展开
  • 陕西师范大学地理科学与旅游学院, 陕西 西安 710119

收稿日期: 2019-07-11

  网络出版日期: 2020-06-28

基金资助

国家自然科学基金项目(41571062)

Temporal and Spatial Characteristics and Possible Causes Research of Qinghai-Tibetan Plateau Warming from 1980 to 2016

  • Ying WEI ,
  • Keqin DUAN
Expand
  • School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, Shaanxi, China

Received date: 2019-07-11

  Online published: 2020-06-28

摘要

为全面认识1980 -2016年期间青藏高原气温的时空变化, 利用气象台站地表气温(TO)数据, 对比分析了JRA-55(TJ)、 ERA-Interim(TE)和MERRA(TM)三种再分析2 m气温资料在高原东部的适用性, 并选取最优数据集相关参数进一步探讨高原气温变化的可能机制。结果表明, TO、 TJ、 TE和TM均能够揭示高原呈现的显著增温趋势, 其年平均增温趋势分别为0.52, 0.37, 0.29和0.26 ℃·(10a)-1。对比三种再分析资料与TO年、 季时空变化发现, TJ在高原的适用性优于TE和TM, 可用来弥补高原西部观测的不足。TJ显示高原整体存在“双中心”变暖区, 相比于夏季, 冬季的变暖中心会发生“南移”, 且中心最大变暖趋势[0.9 ℃·(10a)-1]大于夏季[0.8 ℃·(10a)-1]。夏季升温趋势存在南缓北快差异可能与降水潜热变化有关, 而中东部冬季变暖显著则可能与积雪-反照率反馈调节地表净辐射收支相关。

本文引用格式

魏莹 , 段克勤 . 1980 -2016年青藏高原变暖时空特征及其可能影响原因[J]. 高原气象, 2020 , 39(3) : 459 -466 . DOI: 10.7522/j.issn.1000-0534.2019.00121.

Abstract

In order to fully detect the temporal and spatial temperature changes on the Qinghai-Tibetan Plateau (QTP) during 1980-2016, The monthly mean surface air temperature at 2 m from the JRA-55 (TJ), ERA-Interim (TE) and MERRA (TM) were respectively compared with those observed value at meteorological stations in the QTP.All the data sets reveal QTP has experienced significant warming, with the annual warming trends of 0.52 (TO), 0.37 (TJ), 0.29 (TE) and 0.26 (TM) ℃·(10a)-1, respectively.By comparison the annual and seasonal variations and trends of three reanalysis data with TO, it is found that the applicability of TJ is better than TE and TM in the eastern QTP.Then, TJ can be used to make up for the lack of observation in the western QTP.Generally, TJ shows there is a “dual-center” warming zone in the whole QTP, and the warming center in winter moves southward contrast to in summer.The maximum warming rate [0.9 ℃·(10a)-1]in winter was larger than that[0.8 ℃·(10a)-1] in summer.In addition, the summer warming trend in northern QTP is much higher than that in southern QTP, which is maybe related to latent heat caused by the precipitation change.While the highest warming rate in winter occurs on the central western QTP, which is may caused by the increase of net radiation budget due to the snow-albedo feedback.

参考文献

[1]Cai D, You Q, Fraedrich K, al et, 2017.Spatiotemporal temperature variability over the Tibetan Plateau: Altitudinal dependence associated with the global warming hiatus[J].Journal of Climate, 30(3): 969-984.
[2]Chung E S, Soden B, Sohn B J, al et, 2014.Upper-tropospheric moistening in response to anthropogenic warming[J].Proceedings of the National Academy of Sciences, 111(32): 11636-11641.
[3]Dee D P, K?llén E, Simmons A J, al et, 2011.Comments on “Reanalyses suitable for characterizing long-term trends”[J].Bulletin of the American Meteorological Society, 92(1): 65-70.
[4]Dee D P, Uppala S M, Simmons A J, al et, 2011.The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J].Quarterly Journal of the Royal Meteorological Society, 137(656): 553-597.
[5]Duan J, Li L, Fang Y, 2015.Seasonal spatial heterogeneity of warming rates on the Tibetan Plateau over the past 30 years[J].Scientific Reports, 5: 11725.
[6]Ebita A, Kobayashi S, Ota Y, al et, 2011.The Japanese 55-year Reanalysis “JRA-55”: An Interim Report[J].SOLA, 7: 149-152.
[7]Gelaro R, Mccarty W S, Max J, al et, 2017.The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)[J].Journal of Climate, 30(14): 5419-5454.
[8]Green J K, Seneviratne S I, Berg A M, al et, 2019.Large influence of soil moisture on long-term terrestrial carbon uptake[J].Nature, 565(7740): 476.
[9]Guo D, Yu E, Wang H, 2016.Will the Tibetan Plateau warming depend on elevation in the future?[J].Journal of Geophysical Research: Atmospheres, 121(8): 3969-3978.
[10]Hu X, Cai M, Yang S, al et, 2018.Air temperature feedback and its contribution to global warming[J].Science China Earth Sciences, 61(10): 1491-1509.
[11]Hua S, Liu Y, Jia R, al et, 2018.Role of clouds in accelerating cold‐season warming during 2000 -2015 over the Tibetan Plateau[J].International Journal of Climatology, 38(13): 4950-4966.
[12]Huang J, Yu H, Dai A, al et, 2017.Drylands face potential threat under 2 C global warming target[J].Nature Climate Change, 7(6): 417.
[13]Jia R, Liu Y, Hua S, al et, 2018.Estimation of the Aerosol Radiative Effect over the Tibetan Plateau Based on the Latest CALIPSO Product[J].Journal of Meteorological Research, 32(5): 707-722.
[14]Kobayashi S, Ota Y, Harada Y, al et, 2015.The JRA-55 reanalysis: General specifications and basic characteristics[J].Journal of the Meteorological Society of Japan.Ser.II, 93(1): 5-48.
[15]Kuang X, Jiao J J, 2016.Review on climate change on the Tibetan Plateau during the last half century[J].Journal of Geophysical Research: Atmospheres, 121(8): 3979-4007.
[16]Liu X D, Libin Y, 2017.Elevation dependent climate change in the Tibetan Plateau[J].Oxford Research Encyclopedia of Climate Science.DOI: 10.1093/acrefore/9780190228620. 013.593.
[17]Ma Y, Ma W, Zhong L, al et, 2017.Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia[J].Scientific Reports, 7: 44574.
[18]Naud C M, Chen Y, Rangwala I, al et, 2013.Sensitivity of downward longwave surface radiation to moisture and cloud changes in a high‐elevation region[J].Journal of Geophysical Research: Atmospheres, 118(17): 10072-10081.
[19]Palazzi E, Filippi L, von Hardenberg J, 2017.Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model simulations[J].Climate Dynamics, 48(11/12): 3991-4008.
[20]Pepin N, Bradley R S, Diaz H F, al et, 2015.Elevation-dependent warming in mountain regions of the world[J].Nature Climate Change, 5(5): 424-430.
[21]Ran Y, Li X, Cheng G, 2018.Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau[J].Cryosphere, 12(2): 595-608.
[22]Rangwala I, Miller J R, Xu M, 2009.Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor[J].Geophysical Research Letters, 36(6): 295-311.
[23]Rangwala I, Sinsky E, Miller J R, 2013.Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models[J].Environmental Research Letters, 8(2): 024040.
[24]Rienecker M M, Suarez M J, Gelaro R, al et, 2011.MERRA: NASA’s modern-era retrospective analysis for research and applications[J].Journal of Climate, 24(14): 3624-3648.
[25]Schneider T, Teixeira J, Bretherton C S, al et, 2017.Climate goals and computing the future of clouds[J].Nature Climate Change, 7(1): 3-5.
[26]Stevens B, Feingold G, 2009.Untangling aerosol effects on clouds and precipitation in a buffered system[J].Nature, 461(7264): 607-613.
[27]Su J, Duan A, Xu H, 2017.Quantitative analysis of surface warming amplification over the Tibetan Plateau after the late 1990s using surface energy balance equation[J].Atmospheric Science Letters, 18(3): 112-117.
[28]Thackeray C W, Fletcher C G, 2016.Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions[J].Progress in Physical Geography, 40(3): 392-408.
[29]Thorne P W, Vose R S, 2010.Reanalyses suitable for characterizing long-term trends[J].Bulletin of the American Meteorological Society, 91(3): 353-362.
[30]Xu Y, Knudby A, Ho H C, al et, 2017.Warming over the Tibetan Plateau in the last 55 years based on area-weighted average temperature[J].Regional Environmental Change, 17(8): 2339-2347.
[31]Yao T, Thompson L G, Mosbrugger V, al et, 2012.Third pole environment (TPE)[J].Environmental Development, 3: 52-64.
[32]You Q, Fraedrich K, Ren G, al et, 2013.Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data[J].International Journal of Climatology, 33(6): 1337-1347.
[33]You Q, Min J, Kang S, 2016.Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades[J].International Journal of Climatology, 36(6): 2660-2670.
[34]Zhou C, Wang K, Ma Q, 2017.Evaluation of eight current reanalyses in simulating land surface temperature from 1979 to 2003 in China[J].Journal of Climate, 30(18): 7379-7398.
[35]Zou H, Zhu J, Zhou L, al et, 2014.Validation and application of reanalysis temperature data over the Tibetan Plateau[J].Journal of Meteorological Research, 28(1): 139-149.
[36]保云涛, 游庆龙, 谢欣汝, 2018.青藏高原积雪时空变化特征及年际异常成因[J].高原气象, 37(4): 899-910.DOI: 10.7522/j.issn.1000-0534.2017.00099.
[37]陈涛, 智海, 边多, 2019.青藏高原观测地表温度与ERA-Interim再分析资料的差异及归因分析[J].山地学报, 37(1): 1-8.
[38]除多, 杨勇, 罗布坚参, 等, 2016.MERRA再分析地面气温产品在青藏高原的适用性分析[J].高原气象, 35(2): 337-350.DOI: 10.7522/j.issn.1000-0534.2015.00018.
[39]杜鹃, 文莉娟, 苏东生, 2019.三套再分析资料在青藏高原湖泊模拟研究中的适用性分析[J].高原气象, 38(1): 101-113.DOI: 10.7522/j.issn.1000-0534.2018.00110.
[40]樊威伟, 马伟强, 郑艳, 等, 2018.青藏高原地面加热场年际变化特征及其与西风急流关系研究[J].高原气象, 37 (3): 591-601.DOI: 10.7522/j.issn.1000-0534.2017.00062.
[41]高星星, 陈艳, 张武, 等, 2017.青藏高原云的气候特征及其对地气系统的影响[J].兰州大学学报(自然科学版), 53(4): 459-466, 480.
[42]李瑞青, 吕世华, 韩博, 等, 2012.青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J].高原气象, 31(6): 1488-1502.
[43]刘舸, 赵平, 南素兰, 等, 2018.夏季青藏高原上空热力异常与其上下游大气环流联系的研究进展[J].气象学报, 76(6): 861-869
[44]孙玉婷, 高庆九, 闵锦忠, 2013.再分析温度资料与西藏地区冬、 夏季观测气温的比较[J].高原气象, 32(4): 909-920.DOI: 1000-0534 (2013) 04-0909-12.
[45]王田野, 吴通华, 李韧, 等, 2016.两种再分析月平均气温资料在蒙古国的适用性评估[J].高原气象, 35(3): 651-661.DOI: 10.7522/j.issn.1000-0534.2016.00033..
[46]徐柏青, 2015.青藏高原气候变化: 变暖变湿[N].人民日报, (016).
[47]徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961 -2010年青藏高原气候变化特征分析[J].高原气象, 38(5): 911-919.DOI: 10.7522/j.issn.1000-0534.2018.00137.
[48]张琪, 李跃清, 任景轩, 2018.青藏高原东侧不同云类对气温变化影响的初步分析[J].高原气象, 37(3): 734-746.DOI: 10. 7522/j.issn.1000-0534.2017.00085.
[49]朱智, 师春香, 张涛, 等, 2015.多种再分析地表温度资料在中国区域的适用性分析[J].冰川冻土, 37(3): 614-624.
文章导航

/