[1]Cai D, You Q, Fraedrich K, al et, 2017.Spatiotemporal temperature variability over the Tibetan Plateau: Altitudinal dependence associated with the global warming hiatus[J].Journal of Climate, 30(3): 969-984.
[2]Chung E S, Soden B, Sohn B J, al et, 2014.Upper-tropospheric moistening in response to anthropogenic warming[J].Proceedings of the National Academy of Sciences, 111(32): 11636-11641.
[3]Dee D P, K?llén E, Simmons A J, al et, 2011.Comments on “Reanalyses suitable for characterizing long-term trends”[J].Bulletin of the American Meteorological Society, 92(1): 65-70.
[4]Dee D P, Uppala S M, Simmons A J, al et, 2011.The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J].Quarterly Journal of the Royal Meteorological Society, 137(656): 553-597.
[5]Duan J, Li L, Fang Y, 2015.Seasonal spatial heterogeneity of warming rates on the Tibetan Plateau over the past 30 years[J].Scientific Reports, 5: 11725.
[6]Ebita A, Kobayashi S, Ota Y, al et, 2011.The Japanese 55-year Reanalysis “JRA-55”: An Interim Report[J].SOLA, 7: 149-152.
[7]Gelaro R, Mccarty W S, Max J, al et, 2017.The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)[J].Journal of Climate, 30(14): 5419-5454.
[8]Green J K, Seneviratne S I, Berg A M, al et, 2019.Large influence of soil moisture on long-term terrestrial carbon uptake[J].Nature, 565(7740): 476.
[9]Guo D, Yu E, Wang H, 2016.Will the Tibetan Plateau warming depend on elevation in the future?[J].Journal of Geophysical Research: Atmospheres, 121(8): 3969-3978.
[10]Hu X, Cai M, Yang S, al et, 2018.Air temperature feedback and its contribution to global warming[J].Science China Earth Sciences, 61(10): 1491-1509.
[11]Hua S, Liu Y, Jia R, al et, 2018.Role of clouds in accelerating cold‐season warming during 2000 -2015 over the Tibetan Plateau[J].International Journal of Climatology, 38(13): 4950-4966.
[12]Huang J, Yu H, Dai A, al et, 2017.Drylands face potential threat under 2 C global warming target[J].Nature Climate Change, 7(6): 417.
[13]Jia R, Liu Y, Hua S, al et, 2018.Estimation of the Aerosol Radiative Effect over the Tibetan Plateau Based on the Latest CALIPSO Product[J].Journal of Meteorological Research, 32(5): 707-722.
[14]Kobayashi S, Ota Y, Harada Y, al et, 2015.The JRA-55 reanalysis: General specifications and basic characteristics[J].Journal of the Meteorological Society of Japan.Ser.II, 93(1): 5-48.
[15]Kuang X, Jiao J J, 2016.Review on climate change on the Tibetan Plateau during the last half century[J].Journal of Geophysical Research: Atmospheres, 121(8): 3979-4007.
[16]Liu X D, Libin Y, 2017.Elevation dependent climate change in the Tibetan Plateau[J].Oxford Research Encyclopedia of Climate Science.DOI: 10.1093/acrefore/9780190228620. 013.593.
[17]Ma Y, Ma W, Zhong L, al et, 2017.Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia[J].Scientific Reports, 7: 44574.
[18]Naud C M, Chen Y, Rangwala I, al et, 2013.Sensitivity of downward longwave surface radiation to moisture and cloud changes in a high‐elevation region[J].Journal of Geophysical Research: Atmospheres, 118(17): 10072-10081.
[19]Palazzi E, Filippi L, von Hardenberg J, 2017.Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model simulations[J].Climate Dynamics, 48(11/12): 3991-4008.
[20]Pepin N, Bradley R S, Diaz H F, al et, 2015.Elevation-dependent warming in mountain regions of the world[J].Nature Climate Change, 5(5): 424-430.
[21]Ran Y, Li X, Cheng G, 2018.Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau[J].Cryosphere, 12(2): 595-608.
[22]Rangwala I, Miller J R, Xu M, 2009.Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor[J].Geophysical Research Letters, 36(6): 295-311.
[23]Rangwala I, Sinsky E, Miller J R, 2013.Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models[J].Environmental Research Letters, 8(2): 024040.
[24]Rienecker M M, Suarez M J, Gelaro R, al et, 2011.MERRA: NASA’s modern-era retrospective analysis for research and applications[J].Journal of Climate, 24(14): 3624-3648.
[25]Schneider T, Teixeira J, Bretherton C S, al et, 2017.Climate goals and computing the future of clouds[J].Nature Climate Change, 7(1): 3-5.
[26]Stevens B, Feingold G, 2009.Untangling aerosol effects on clouds and precipitation in a buffered system[J].Nature, 461(7264): 607-613.
[27]Su J, Duan A, Xu H, 2017.Quantitative analysis of surface warming amplification over the Tibetan Plateau after the late 1990s using surface energy balance equation[J].Atmospheric Science Letters, 18(3): 112-117.
[28]Thackeray C W, Fletcher C G, 2016.Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions[J].Progress in Physical Geography, 40(3): 392-408.
[29]Thorne P W, Vose R S, 2010.Reanalyses suitable for characterizing long-term trends[J].Bulletin of the American Meteorological Society, 91(3): 353-362.
[30]Xu Y, Knudby A, Ho H C, al et, 2017.Warming over the Tibetan Plateau in the last 55 years based on area-weighted average temperature[J].Regional Environmental Change, 17(8): 2339-2347.
[31]Yao T, Thompson L G, Mosbrugger V, al et, 2012.Third pole environment (TPE)[J].Environmental Development, 3: 52-64.
[32]You Q, Fraedrich K, Ren G, al et, 2013.Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data[J].International Journal of Climatology, 33(6): 1337-1347.
[33]You Q, Min J, Kang S, 2016.Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades[J].International Journal of Climatology, 36(6): 2660-2670.
[34]Zhou C, Wang K, Ma Q, 2017.Evaluation of eight current reanalyses in simulating land surface temperature from 1979 to 2003 in China[J].Journal of Climate, 30(18): 7379-7398.
[35]Zou H, Zhu J, Zhou L, al et, 2014.Validation and application of reanalysis temperature data over the Tibetan Plateau[J].Journal of Meteorological Research, 28(1): 139-149.
[36]保云涛, 游庆龙, 谢欣汝, 2018.青藏高原积雪时空变化特征及年际异常成因[J].高原气象, 37(4): 899-910.DOI: 10.7522/j.issn.1000-0534.2017.00099.
[37]陈涛, 智海, 边多, 2019.青藏高原观测地表温度与ERA-Interim再分析资料的差异及归因分析[J].山地学报, 37(1): 1-8.
[38]除多, 杨勇, 罗布坚参, 等, 2016.MERRA再分析地面气温产品在青藏高原的适用性分析[J].高原气象, 35(2): 337-350.DOI: 10.7522/j.issn.1000-0534.2015.00018.
[39]杜鹃, 文莉娟, 苏东生, 2019.三套再分析资料在青藏高原湖泊模拟研究中的适用性分析[J].高原气象, 38(1): 101-113.DOI: 10.7522/j.issn.1000-0534.2018.00110.
[40]樊威伟, 马伟强, 郑艳, 等, 2018.青藏高原地面加热场年际变化特征及其与西风急流关系研究[J].高原气象, 37 (3): 591-601.DOI: 10.7522/j.issn.1000-0534.2017.00062.
[41]高星星, 陈艳, 张武, 等, 2017.青藏高原云的气候特征及其对地气系统的影响[J].兰州大学学报(自然科学版), 53(4): 459-466, 480.
[42]李瑞青, 吕世华, 韩博, 等, 2012.青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J].高原气象, 31(6): 1488-1502.
[43]刘舸, 赵平, 南素兰, 等, 2018.夏季青藏高原上空热力异常与其上下游大气环流联系的研究进展[J].气象学报, 76(6): 861-869
[44]孙玉婷, 高庆九, 闵锦忠, 2013.再分析温度资料与西藏地区冬、 夏季观测气温的比较[J].高原气象, 32(4): 909-920.DOI: 1000-0534 (2013) 04-0909-12.
[45]王田野, 吴通华, 李韧, 等, 2016.两种再分析月平均气温资料在蒙古国的适用性评估[J].高原气象, 35(3): 651-661.DOI: 10.7522/j.issn.1000-0534.2016.00033..
[46]徐柏青, 2015.青藏高原气候变化: 变暖变湿[N].人民日报, (016).
[47]徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961 -2010年青藏高原气候变化特征分析[J].高原气象, 38(5): 911-919.DOI: 10.7522/j.issn.1000-0534.2018.00137.
[48]张琪, 李跃清, 任景轩, 2018.青藏高原东侧不同云类对气温变化影响的初步分析[J].高原气象, 37(3): 734-746.DOI: 10. 7522/j.issn.1000-0534.2017.00085.
[49]朱智, 师春香, 张涛, 等, 2015.多种再分析地表温度资料在中国区域的适用性分析[J].冰川冻土, 37(3): 614-624.