青藏高原陆面过程对中国的天气和气候具有重要影响。高原西部因自然环境恶劣、 近地层观测实验缺乏而难以精确确定陆面过程参数和土壤热属性等参数, 陆面过程模型通常只能采用模型默认参数, 给该地区陆面过程模拟结果带来了不确定性, 也降低耦合了陆面过程模型的天气气候模式性能。本文利用2015年6月至2017年1月期间青藏高原西部狮泉河站的陆面过程观测资料, 分析了该地区常规气象特征, 估算了空气动力粗糙度、 热力粗糙度、 地表反照率、 土壤热容量、 土壤热传导率、 土壤热扩散率和土壤水通量密度等重要参数。结果表明, 狮泉河区域近地层以偏西风为主; 气温、 太阳辐射、 比湿等的季节变化比较显著; 干湿季分明, 降水主要集中在6—9月。地表反照率受土壤湿度影响, 存在微小的季节变化, 平均为0.20, 与沙漠和戈壁相当。空气动力粗糙度和零平面位移受各方位地物分布影响而存在差异, 平均分别为5.58×10-2 m和0.44 m。不同热力粗糙度计算方案在该地区的性能存在较大差异; 热传输附加阻尼及热力粗糙度受大气边界层层结状况影响, 狮泉河大气边界层层结以不稳定为主, 不稳定层结下热传输附加阻尼kB-1和热力粗糙度平均值分别为11.37和6.44×10-7 m。土壤热容量、 热传导率、 热扩散率和水通量密度年平均分别为0.95×106 J·m-3·K-1、 0.24 W·m-1·K-1、 2.73×10-7 m2·s-1和0.12×10-5 m·s-1, 与塔克拉玛干沙漠和敦煌戈壁的观测结果比较一致。
The land surface processes of the Qinghai-Xizang Plateau have important effects on regional and global weather and climate through its thermodynamic and mechanical forcing.Due to the harsh natural environment, the western Qinghai-Xizang Plateau lacks the land surface process parameters based on field measurements.Thus, the land surface process models usually use empirical or default parameters, which leads to great uncertainty in the simulation of this area and reduces the performance of weather and climate models coupled with land surface process models.With the data collected from June 2015 to January 2017 at Shiquanhe (32.50°N, 80.08°E, 4279.3 m above sea level) in the western Qinghai-Xizang Plateau, the conventional meteorological characteristics were analyzed and the land surface parameters, such as aerodynamic roughness, thermal roughness, surface albedo, and heat capacity, thermal conductivity, thermal diffusivity, and water flux density of soil, were estimated.Results show that (1) the wind speed was relatively low and the annual value was 2.17 m·s-1, and westerlies were dominant with the annual westerly wind frequency 59.2% and showed little season variation at Shiquanhe.The seasonal variation of air temperature, solar radiation and specific humidity were obvious.The difference between the maximum temperature and the minimum temperature could reach 47.1 K, and the maximum daily difference was 22.40 K.The average specific humidity was 2.6 g·kg-1, lower than in the easter or central Qinghai-Xizang Plateau.The monsoon could affect Shiquanhe area approximately in late May, and then brought most of the annual precipitation during June to September.The surface albedo was affected by soil moisture and had weak seasonal changes, with an average of 0.20, which is equivalent to deserts and Gobi.(2) The aerodynamic roughness and zero-plane displacement were affected by the distribution of ground features in directions, and the average were 5.58×10-2 m and 0.44 m, respectively.The thermodynamic roughness length or the excess resistance to heat transfer (kB-1) varied with the atmospheric stratification, and the atmospheric stratification of the boundary layer at Shiquanhe was mainly unstable.The performances of thermodynamic roughness parameterization schemes were different.Compared to other parameterization schemes the mean kB-1 calculated by the Z95 scheme agreed best with the value calculated with observation under unstable stratification.(3) The annual average soil heat capacity, thermal conductivity, thermal diffusivity, and water flux density were 0.95×106 J·m-3·K-1, 0.24 W·m-1·K-1, 2.73×10-7 m2·s-1, 0.12×10-5 m·s-1, respectively, which were relatively consistent with the observations in the desert and Gobi.
[1]Bonan G B, 1998.The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model[J].Journal of Climate, 11 (6): 1307-1326.
[2]Boos W, Kuang Z M, 2010.Dominant control of the South Asian Monsoon by orographic insulation versus plateau heating[J].Nature, 463: 218-222.DOI: 10.1038/nature08707.
[3]Campbell G S, 1985.Soil physics with BASIC: Transport models for soil-plant systems[M].Amsterdam, the Netherlands: Elsevier Science, 1-149.
[4]Chamberlain A C, 1966.Transport of gases to and from grass and grass-like surfaces[J].Proceedings of The Royal Society of London.Series A, Mathematical and Physical Sciences (1934-1990), 290 (1421): 236-265.DOI: 10.1098/rspa.1966.0047.
[5]Chen F, Janji? Z A, Mitchell K, 1997.Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale eta model[J].Boundary-Layer Meteorology, 85: 391-421.
[6]Cheng Y G, Brutsaert W, 2005.Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer[J].Boundary-Layer Meteorology, 114: 519-538.DOI: 10. 1007/s10546-004-1425-4.
[7]De Vries D A, 1963.Thermal Properties of Soils.In W.R.v.Wijk, Ed., Physics of plant environment[M].New York: John Wiley & Sons, 210-235.
[8]Dickinson R E, Henderson-Sellers A, Kennedy P J, al et, 1986.Biosphere-atmosphere transfer scheme (BATS) for the NCAR Community Climate Model[R].
[9]Atmospheric Analysis and Prediction Division, National Center for Atmospheric Research, PB87-141511.
[10]Dolman H, 1986.Estimates of roughness length and zero plane displacement for foliated and non-foliated oak canopy[J].Agricultural and Forest Meteorology, 36 (3): 241-248.DOI: 10.1016/0168-1923(86)90038-9.
[11]Fu Y F, Ma Y M, Zhong L, al et, 2020.Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective[J].National Science Review, 7 (3): 500-515.DOI: 10.1093/nsr/nwz226.
[12]Gao Z Q, Lenschow D H, Horton R, al et, 2008.Comparison of two soil temperature algorithms for a bare ground site on the Loess Plateau in China[J].Journal of Geophysical Research: Atmospheres, 113: D18105.DOI: 10.1029/2008JD010285.
[13]Garratt J R, 1992.The atmospheric boundary layer[M].New York: Cambrige University Press, 291-293.
[14]Garratt J R, Francey R J, 1978.Bulk characteristics of heat transfer in the unstable, baroclinic atmospheric boundary layer[J].Boundary-Layer Meteorology, 15: 399-421.DOI: 10.1007/BF00120603.
[15]Kljun N, Calanca P, Rotach M, al et, 2015.A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP)[J].Geoscientific Model Development, 8: 3695-3713.DOI: 10.5194/gmd-8-3695-2015.
[16]Liu H Z, Wang B M, Fu C B, 2008.Relationships between surface albedo soil thermal parameters and soil moisture in the semiarid area of Tongyu northeastern China[J].Advances in Atmospheric Sciences, 25: 757-764.DOI: 10.1007/s00376-008-0757-2.
[17]Owen P, 1963.Heat transfer across rough surfaces[J].Journal of Fluid Mechanics, 15: 321-334.DOI: 10.1017/S0022112063000288.
[18]Paulson C, 1970.The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer[J].Journal of Applied Meteorology, 9: 857-861.DOI: 10.1175/1520-0450(1970)009<0857: TMROWS>2.0.CO; 2.
[19]Stull R B, 2003.An introduction to boundary layer meteorology[M].Dordrecht, The Netherlands: Kluwer Academic Publishers, 643.
[20]Tong B, Gao Z Q, Horton R, al et, 2016.Soil apparent thermal diffusivity estimated by conduction and by conduction-convection heat transfer models[J].Journal of Hydrometeorology, 18: 109-118.DOI: 10.1175/JHM-D-16-0086.1.
[21]Wang A H, Zeng X B, 2012.Evaluation of multi-reanalysis products with in situ observations over the Tibetan Plateau[J].Journal of Geophysical Research Atmospheres, 117: D05102.
[22]Wang Y J, Xu X D, Liu H Z, al et, 2016.Analysis of land surface parameters and turbulence characteristics over the Tibetan Plateau and surrounding region[J].Journal of Geophysical Research: Atmospheres, 121 (16): 9540-9560.DOI: 10.1002/2016jd025401.
[23]Wu G X, Liu Y M, He B, al et, 2012.Thermal controls on the Asian summer monsoon[J].Scientific reports, 2: 404.DOI: 10.1038/srep00404.
[24]Xu X D, Lu C G, Shi X H, al et, 2008.World water tower: An atmospheric perspective[J].Geophysical Research Letters, 35: L20815.DOI: 10.1029/2008GL035867.
[25]Yang K, Koike T, Ishikawa H, al et, 2007.Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization[J].Journal of Applied Meteorology and Climatology, 47: 276-290.DOI: 10.1175/2007JAMC1547.1.
[26]You Q G, Xue X, Peng F, al et, 2017.Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau[J].Agricultural and Forest Meteorology, 232: 48-65.DOI: 10.1016/j.agrformet. 2016.08.004.
[27]Zeng J, Li Z, Quan C, al et, 2015.Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations[J].Remote Sensing of Environment, 163: 91-110.DOI: 10.1016/j.rse.2015.03.008.
[28]Zhang Q, Huang R H, 2004.Parameters of land-surface processes for Gobi in north-west China[J].Boundary-Layer Meteorology, 110: 471-478.DOI: 10.1023/B: BOUN.0000007224.08804.b8.
[29]Zhao P, Li Y Q, Guo X L, al et, 2019.The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The third Tibetan Plateau atmospheric science experiment[J].Journal of Meteorological Research, 33 (3): 375-399.DOI: 10.1007/s13351-019-8602-3.
[30]Zhao P, Xu X D, Chen F, al et, 2018.The third atmospheric scientific experiment for understanding the earth-atmosphere coupled system over the Tibetan Plateau and its effects[J].Bulletin of the American Meteorological Society, 99 (4): 757-776.
[31]Zhou X J, Zhao P, Chen J M, al et, 2009.Impacts of thermodynamic processes over the Tibetan Plateau on the northern hemispheric climate[J].Science in China Series D: Earth Sciences, 52 (11): 1679-1693.DOI: 10.1007/s11430-009-0194-9.
[32]Zhu J H, Ma S P, Zou H, al et, 2014.Evaluation of reanalysis products with in situ GPS sounding observations in the eastern Himalayas[J].Atmospheric and Oceanic Science Letters, 7 (1): 17-22.DOI: 10.1080/16742834.2014.11447129.
[33]Zilitinkevich S, 1995.Non-local turbulent transport: pollution dispersion aspects of coherent structure of connective flows[C]// C.
[34]A.Brebbia, H.Power, eds.Air Pollution III Volume 1 Air Pollution Theory and Simulation.Southampton: WIT Press, 53-60.
[35]曾庆存, 周广庆, 蒲一芬, 等, 2008.地球系统动力学模式及模拟研究[J].大气科学, 32(4): 653-690.
[36]高志球, 卞林根, 逯昌贵, 等, 2002.城市下垫面空气动力学参数的估算[J].应用气象学报, 13(): 26-33.
[37]何冬燕, 田红, 邓伟涛, 2013.三种再分析地表温度资料在青藏高原区域的适用性分析[J].大气科学学报, 36(4): 458-465.
[38]贾立, 王介民, 胡泽勇, 2000.干旱区热力学粗糙度特征及对感热通量估算的影响[J].高原气象, 19(4): 495-503.
[39]李国平, 段廷扬, 巩远发, 2002.青藏高原近地层通量特征的合成分析[J].气象学报, 60(4): 453-460.
[40]李国平, 巩远发, 段廷扬, 2000.青藏高原西部地区的总体输送系数和地面通量[J].科学通报, 45(8): 865-869.
[41]李家伦, 洪钟祥, 罗卫东, 等, 1999.青藏高原改则地区近地层通量观测研究[J].大气科学, 23(2): 142-151.
[42]李黎, 吕世华, 范广洲, 2019.夏季青藏高原地表能量变化对高原低涡生成的影响分析[J].高原气象, 38(6): 1172-1180.DOI: 10.7522/j.issn.1000-0534.2018.00154.
[43]李瑞青, 吕世华, 韩博, 等, 2012.青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J].高原气象, 31(6): 1488-1502.
[44]刘火霖, 胡泽勇, 韩赓, 等, 2020.基于Noah-MP模式的影响青藏高原冻融过程参数化方案评估[J].高原气象, 39(1): 1-14.DOI: 10.7522/j.issn.1000-0534.2019.00009.
[45]刘永强, 何清, 张宏升, 等, 2011.塔克拉玛干沙漠腹地地气相互作用参数研究[J].高原气象, 30(5): 1294-1299.
[46]马耀明, 塚本修, 王介民, 等, 2001.青藏高原草甸下垫面上的动力学和热力学参数分析[J].自然科学进展, 11(8): 824-828.
[47]彭艳, 张宏升, 刘辉志, 等, 2005.青藏高原近地面层气象要素变化特征[J].北京大学学报(自然科学版), 41(2): 180-190.
[48]尚伦宇, 吕世华, 张宇, 等, 2010.青藏高原东部土壤冻融过程中地表粗糙度的确定[J].高原气象, 29(1): 17-22.
[49]盛裴轩, 毛节泰, 李建国, 等, 2003.大气物理学[M].北京: 北京大学出版社, 246
[50]杨显玉, 吕雅琼, 文军, 等, 2020.不同参数化方案和再分析资料在典型高原湖泊地区的适用效果评估分析[J].高原气象, 39(6): 1195-1206.DOI: 10.7522/j.issn.1000-0534.2020.00051.
[51]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社, 1-278.
[52]赵兴炳, 李跃清, 2011.青藏高原东坡高原草甸近地层气象要素与能量输送季节变化分析[J].高原山地气象研究, 31(2): 12-17.
[53]周艳莲, 孙晓敏, 朱治林, 等, 2007.几种典型地表粗糙度计算方法的比较研究[J].地理研究, 26(5): 887-887.
[54]邹基玲, 侯旭宏, 季国良, 1992.黑河地区夏末太阳辐射特征的初步分析[J].高原气象, 11(4): 381-388.