论文

青藏高原地气系统气象科学数据集成和共享

  • 熊安元 ,
  • 冯爱霞 ,
  • 高梅 ,
  • 高峰 ,
  • 张志强 ,
  • 何文春 ,
  • 马伟强 ,
  • 孙方林 ,
  • 张文华 ,
  • 刘娜 ,
  • 赵煜飞 ,
  • 刘媛媛 ,
  • 陈东辉 ,
  • 杨和平 ,
  • 杨笛
展开
  • <sup>1.</sup>国家气象信息中心资料服务室,北京 100081;<sup>2.</sup>中国气象科学研究院人工智能气象应用研究所,北京 100081;<sup>3.</sup>国家气象信息中心系统工程室,北京 100081;<sup>4.</sup>中国科学院青藏高原研究所,北京 100101;<sup>5.</sup>中国科学院青藏高原地球科学卓越创新中心,北京 100101;<sup>6.</sup>中国科学院西北生态环境资源研究院寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000

收稿日期: 2020-07-30

  网络出版日期: 2021-08-28

基金资助

国家自然科学基金项目(91637313)

Integration and Sharing for Meteorological Data of the Land-atmosphere Systems over the Qinghai-Xizang Plateau

  • Anyuan XIONG ,
  • Aixia FENG ,
  • Mei GAO ,
  • Feng GAO ,
  • Zhiqiang ZHANG ,
  • Wenchun HE ,
  • Weiqiang MA ,
  • Fanglin SUN ,
  • Wenhua ZHANG ,
  • Na LIU ,
  • Yufei ZHAO ,
  • Yuanyuan LIU ,
  • Donghui CHEN ,
  • Heping YANG ,
  • Di YANG
Expand
  • <sup>1.</sup>Data service office,National Meteorological Information Center,Beijing 100081,China;<sup>2.</sup>Chinese Academy of Meteorological Science,Beijing 100081,China;<sup>3.</sup>System Engineering Office,National Meteorological Information Center,Beijing 100081,China;<sup>4.</sup>Institute of Qinghai-Xizang Plateau Research,Chinese Academy of Sciences,Beijing 100101,China;<sup>5.</sup>CAS Center for Excellence in Qinghai-Xizang Plateau Earth Sciences,Chinese Academy of Sciences,Beijing 100101,China;<sup>6.</sup>Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China

Received date: 2020-07-30

  Online published: 2021-08-28

摘要

观测资料匮乏是制约青藏高原地球科学问题深入研究的关键因素。中国气象局国家气象信息中心联合中国气象科学研究院、 中国科学院青藏高原研究所和西北生态环境资源研究院对近几十年来我国青藏高原区域的地气系统的大气和陆面观测资料及相关分析产品进行了整合集成, 获得了高原区域长年代、 多要素的地气系统综合气象数据, 研发了综合气象数据库及其数据共享平台。本文系统介绍了相关科学数据的观测及数据情况, 包括中国气象局长期业务观测数据、 历次青藏高原大气科学试验数据、 中国科学院部分野外台站长期观测试验数据和一些科学研究项目的产出数据成果, 描述了多种数据的标准化集成技术和成果, 设计并发布了青藏高原地气系统多源信息共享平台, 为研究和解决青藏高原地球科学问题提供宝贵的数据资源。

本文引用格式

熊安元 , 冯爱霞 , 高梅 , 高峰 , 张志强 , 何文春 , 马伟强 , 孙方林 , 张文华 , 刘娜 , 赵煜飞 , 刘媛媛 , 陈东辉 , 杨和平 , 杨笛 . 青藏高原地气系统气象科学数据集成和共享[J]. 高原气象, 2021 , 40(4) : 724 -736 . DOI: 10.7522/j.issn.1000-0534.2020.00079

Abstract

Sparse observations over the Qinghai-Xizang Plateau is one of the key factors hindering research our ability to gain deep understanding of the region and its effects.The land-atmosphere observations and their related analysis products made in the last a few decades in the region were integrated by the National Meteorological Information Center together with the Chinese Academy of Meteorological Science, the Institute of Qinghai-Xizang Plateau Research and the Northwest Institute of Eco-Environment and Resources of Chinese Academy of Sciences, leading to a long-term, multiple-element and integrated land-atmosphere dataset.The integrated database and sharing platform was also developed.This paper introduces the related observations and data products, including the long-term operational measurements of the China Meteorological Administration, data from the four atmospheric experiments conducted over the Qinghai-Xizang Plateau, part of long-term observations implemented by the Chinese Academy of Sciences and some products produced in scientific research projects.The techniques on the combination and standardization of the multiple datasets are described.It presents a highly valuable data resource for the scientific research and applications in dealing with various earth issues in the region.

参考文献

[1]Chen X, Long D, Hong Y, al et, 2017.Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the upper Brahmaputra River basin? [J].Water Resource Research, 53(3): 2431-2466.
[2]Dean V, Mahrt L, 1997.Quality control and flux sampling problems for tower and aircraft data [J].Journal of Atmospheric and Oceanic Technology, 14(3): 512.
[3]Ma Y Z, Hong Y, Chen Y, al et, 2018.Performance of optimally merged multi-satellite precipitation products using the dynamic Bayesian Model Averaging scheme over the Qinghai-Xizang Plateau [J].Journal of Geophysical Research: Atmospheres, 123(2): 814-834.
[4]Shi C X, Xie Z H, Qian H, al et, 2011.China land soil moisture EnKF data assimilation based on satellite remote sensing data [J].Science China Earth Sciences, 54(9): 1430-1440.
[5]Thomas F, Bodo W, 1996.Tools for quality assessment of surface-based flux measurements [J].Agricultural and Forest Meteorology, 78(1/2): 83-105.
[6]Wan W, Long D, Hong Y, al et, 2016.A lake data set for the Qinghai-Xizang Plateau from the 1960s, 2005, and 2014[J].Scientific Data, 3: 160039. .
[7]Wu G X, Liu Y M, Dong B W, al et, 2012.Revisiting Asian monsoon formation and change associated with Qinghai-Xizang Plateau forcing: I.Formation [J].Climate Dynamics, 39(5): 1169-1181.
[8]Xu X D, Zhang R H, Koike T, al et, 2008.A new integrated observational system over the Qinghai-Xizang Plateau [J].Bulletin of the American Meteorological Society, 89: 1492-1496.DOI: 10.1175/2008BAMS2557.1.
[9]Zhang R H, Koike T, Xu X D, al et, 2012.A China-Japan cooperative JICA atmospheric observing network over the Qinghai-Xizang Plateau (JICA/Tibet Project): An overview [J].Journal of Meteorological Society of Japan, 90C: 1-16.
[10]Zhang Y F, Hoar T J, Yang Z L, al et, 2014.Assimilation of MODIS snow cover through the Data Assimilaton Research Testbed and the Community Land Model version 4[J].Journal of Geophysical Research: Atmospheres, 119: 7091-7103.
[11]Zhao P, Xu X D, Chen F, al et, 2018.The third atmospheric scientific experiment for understanding the earth atmosphere coupled system over the Qinghai-Xizang Plateau and its effects [J].Bulletin of the American Meteorological Society, 99(4): 757-776.
[12]陈丹, 周长艳, 齐冬梅, 等, 2019.夏季青藏高原及周边大气热源与四川盆地暴雨的关系[J].高原气象, 38 (6): 1149-1157.DOI: 10.7522/j.issn.1000-0534.2019.00041.
[13]胡伟, 马伟强, 马耀明, 等, 2020.GLDAS资料驱动的Noah-MP陆面模式青藏高原地表能量交换模拟性能评估[J].高原气象, 39 (3): 486-498.DOI: 10.7522/j.issn.10000534.2019.00060.
[14]李茂善, 阴蜀城, 刘啸然, 等, 2019.近10年青藏高原及其周边湍流通量变化的数值模拟[J].高原气象, 38 (6): 1140-1148.DOI: 10.7522/j.issn.1000-0534.2018.00145.
[15]马耀明, 姚檀栋, 王介民, 2006a.青藏高原能量和水循环试验研究-GAME/Tibet与CAMP/Tibet研究进展[J].高原气象, 25(2): 344-351.
[16]马耀明, 姚檀栋, 王介民, 等, 2006b.青藏高原复杂地表能量通量研究[J].地球科学进展, 21(12): 1215-1223.
[17]庞紫豪, 王东海, 姜晓玲, 等, 2019.基于变分客观分析方法的青藏高原试验区夏季对流降水过程热动力特征分析[J].大气科学, 43(3): 511-524.
[18]孙枢, 2003.地球数据是地球科学创新的重要源泉--从地球科学谈科学数据共享[J].地球科学进展, 18( 3): 334-337.
[19]陶诗言, 罗四维, 张鸿材, 1984.1979年5 -8月青藏高原气象科学实验及其观测系统[J].气象, 10(7): 2-5.
[20]王佳强, 赵煜飞, 任芝花, 等, 2018.中国自动土壤水分红观测资料质量控制方法设计与效果检验[J].气象, 44(2): 244-257.
[21]王介民, 王维真, 奥银焕, 等, 2007.复杂条件下湍流通量的观测与分析[J].地球科学进展, 22(8): 791-797.
[22]王介民, 邱华盛, 2000.中日合作亚洲季风实验-青藏高原实验(GAME-Tibet) [J].中国科学院院刊, 5: 386-388.
[23]吴国雄, 李伟平, 郭华, 等, 1997.青藏高原感热气泵和亚洲季风, 赵九章纪念文集[C].北京: 科学出版社.
[24]熊安元, 王伯民, 王颖,等, 2009.中华人民共和国气象行业标准 气象资料分类与编码(QX/T 102-2009)[M].北京, 气象出版社.
[25]徐祥德, 陈联寿, 2006.青藏高原大气科学试验研究进展[J].应用气象学报, 17(6): 756-772.
[26]徐祥德, 周明煜, 陈家宜, 等, 2001.青藏高原地-气过程动力、 热力结构综合物理图像 [J].中国科学 地球科学, 31(5): 428-440.
[27]徐祥德, 1998.青藏高原科学试验(TIPEX )介绍 [J].中国科技信息, 19-20: 95-95.
[28]续昱, 高艳红, 2020.基于GLDAS与再分析资料的青藏高原内循环降水率分析[J].高原气象, 39 (3): 499-510.DOI: 10.7522/j.issn.1000-0534.2020.00013.
[29]颜永琴, 牛棚高, 2013.过冷水在冻土观测中造成的缺测问题 [J].地球, (7): 300-1.
[30]张人禾, 徐祥德, 2012. 青藏高原及东缘新一代大气综合探测系统应用平台-中日合作JICA项目 [J].中国工程科学, 14(9): 102-112.
[31]张涛, 2013.基于LAPS/STMAS的多源资料融合及应用研究.硕士学位论文[D].南京: 南京信息工程大学.
[32]赵平, 李跃清, 郭学良, 等, 2018.青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验 [J].气象学报, 76(6): 833-860.
[33]中国气象局, 2003.地面气象观测规范[M].北京, 气象出版社.
[34]中央气象局, 1979.地面气象观测规范[M].北京, 气象出版社.
[35]周秀骥, 赵平, 陈军明, 等, 2009.青藏高原热力作用对北半球气候影响的研究[J].中国科学 地球科学, 39(11): 1473-1486.
[36]诸云强, 孙九林, 2006.面向e-GeoScience的地学数据共享研究进展[J].地球科学进展, 21( 3): 286-290.
文章导航

/