论文

气温变化对中国夏季云水量的影响

  • 刘菊菊 ,
  • 李天江 ,
  • 卫玮
展开
  • <sup>1.</sup>陕西省气象台,陕西 西安 710014;<sup>2.</sup>武威市气象局,甘肃 武威 733000

收稿日期: 2020-01-23

  网络出版日期: 2021-08-28

基金资助

气象预报业务关键技术发展专项(YBGJXM(2020)3A)

The Impact of Temperature Change on China's Summer Cloud Water Content

  • Juju LIU ,
  • Tianjiang LI ,
  • Wei WEI
Expand
  • <sup>1.</sup>Shaanxi Meteorological Observatory,Xi'an 710014,Shaanxi,China;<sup>2.</sup>Wuwei Meteorological Bureau,Wuwei 733000,Gansu,China

Received date: 2020-01-23

  Online published: 2021-08-28

摘要

利用欧洲中期天气预报中心(ECMWF)提供的1979 -2016年ERA-Interim再分析资料分析了中国4个地区夏季大气水循环变量和气温时空特征, 并通过相关分析、 SVD方法及环流场合成分析进一步揭示了气温变化对云水含量的影响。结果表明: 中国夏季云水含量空间分布从东南向西北减少。高原区云水含量与气温正相关, 其他地区为显著负相关。西北地区升温使西风带水汽输送减弱和蒙古东部异常反气旋环流维持, 北方地区升温使东北至蒙古异常反气旋和东南沿海异常气旋维持, 西北太平洋副热带高压(副高)东撤, 二者均使200 hPa西风急流减弱, 水汽输送和上升运动减弱, 云水含量减少。南方地区升温使黄海异常反气旋和南海异常气旋维持, 副高东撤, 200 hPa西风急流偏北, 不利于水汽输送和上升运动, 云水含量减少。高原地区升温使西风带南支和高原西部异常气旋加强, 副高西伸北抬, 高原北侧西风急流和南亚高压增强, 促进水汽输送和低层辐合上升, 使云液水含量增加。

本文引用格式

刘菊菊 , 李天江 , 卫玮 . 气温变化对中国夏季云水量的影响[J]. 高原气象, 2021 , 40(4) : 747 -759 . DOI: 10.7522/j.issn.1000-0534.2020.00044

Abstract

Based on the 1979 -2016 ERA-Interim reanalysis data provided by the European Centre for Medium-Range Weather Forecasting (ECMWF), and by using correlation analysis, singular value decomposition(SVD) method and synthesis analysis, the temporal and spatial characteristics of summer atmospheric water cycle variables and temperature, and the impacts of temperature on cloud water content in four regions of China are analyzed.The results show that: The spatial distribution of cloud water content in summer in China decreases from southeast to northwest.There is a positive correlation between cloud water content and temperature in Qinghai-Xizang Plateau, and a significant negative correlation in other areas of China.The warming in the northwest China weakens the water vapor transported by the westerly belt and maintains the anomalous anticyclone in eastern Mongolia.The warming in the north China maintains the anomalous anticyclone in northeast Mongolia and the anomalous cyclone in southeast coastal, and withdraws the Northwest Pacific subtropical high (subtropical high) to the east.The warming in both the northwest and northern China weaken the 200 hPa westerly stream, the water vapor transport and the updraft are weakened, and thus the cloud water content reduced.The warming of the southern China maintains the anomalous anticyclone in the Yellow Sea and the anomalous cyclone in the South China Sea, and making the subtropical high withdraw eastward and the 200 hPa westerly jet move northward, which are not conducive to water vapor transport and updraft, and thus reduce the cloud water content.The warming of the Qinghai-Xizang Plateau strengthens the south branch of the westerly jet and the anomalous cyclone in the western part of the plateau, causing the subtropical high extend west-northward and the westerly jet and the South Asian high strengthened.These intensify the water vapor transport and convergence on low level, which further increase the cloud liquid water content in Qinghai-Xizang Plateau.

参考文献

[1]Bannister D, Herzog M, Graf H F, al et, 2017.An assessment of recent and future temperature change over the Sichuan Basin, China, using CMIP5 climate models [J].Journal of Climate, 30(17): 6701-6722.
[2]Ding Y H, Ren G Y, Zhao Z C, al et, 2007.Detection, causes and projection of climate change over China: An overview of recent progress [J].Advances in Atmospheric Sciences, 24(6): 954-971.
[3]Genio A D, Wolf A B, 2000.The temperature dependence of the liquid water path of low clouds in the Southern Great Plains [J].Journal of Climate, 13(19): 3465-3486.
[4]Dee D P, Uppala S M, Simmons A J, al et, 2011.The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].Quarterly Journal of the Royal Meteorological Society, 137 (656): 553-597.
[5]Huang J, Lin B, Minnis P, et a1, 2006.Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia [J].Geophysical Research Letters, 33(19): 1-5.
[6]Lin B, Minnis P, Fan A, 2003.Cloud liquid water path variations with temperature observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment [J].Journal of Geophysical Research, 108 (D14): 1093 -1100.
[7]Li J L, Waliser D E, Chen W T, al et, 2012.An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data [J].Journal of Geophysical Research, 117: D16105.DOI: 10. 1029/2012JD017640.
[8]Li Y, Gu H, 2006.Relationship between middle stratiform clouds and large scale circulation over eastern China [J].Geophysical Research Letters, 330(9): 1-4.DOI: 10.1029/2005gl025615.
[9]Platnick S, King M D, Ackerman S A, al et, 2003.The MODIS cloud products: algorithms and examples from Terra [J].IEEE Transactions on Geoscience and Remote Sensing, 41(2): 459-473.
[10]Stocker T F, Qin D H, Plattner G K, al et, 2013.IPCC 2013: Summary for Policy Makers.In: Climate change: The physical science basis.Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [R].
[11]Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[12]Seethala C, Horváth á, 2010.Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds [J].Journal of Geophysical Research, 115: D13202.DOI: 10. 1029/2009JD012662.
[13]Wang H J, Sun J Q, Chen H P, al et, 2012.Extreme climate in China: facts, simulation and projection [J].Meteorologische Zeitschrift, 21(3): 279-304.
[14]Wilcox E M, Harshvardhan, Platnick S, 2009.Estimate of the impact of absorbing aerosol over cloud on the MODIS retrievals of cloud optical thickness and effective radius using two independent retrievals of liquid water path[J].Journal of Geophysical Research, 114: D05210.DOI: 10.1029/ 2008JD010589.
[15]Waliser D E, Li J F, Woods C P, al et, 2009.Cloud ice: a climate model challenge with signs and expectations of progress [J].Journal of Geophysical Research, 114: D00A21.DOI: 10.102 9/2008JD010015.
[16]Weng F Z, Grody N C, Ferraro R, al et, 1997.Cloud liquid water climatology from the special sensor microwave/imager [J].Journal of Climate, 10(5): 1086-1098.
[17]Yamada Y, Satoh M, 2013.Response of ice and liquid water paths of tropical cyclones to global warming simulated by a global nonhydrostatic model with explicit cloud microphysics [J].Journal of Climate, 26(24): 9931-9945.
[18]卞林根, 林学椿, 2008.南极海冰涛动及其对东亚季风和我国夏季降水的可能影响[J].冰川冻土, 30(2): 196-202.
[19]迟竹萍, 边道相, 2002.山东省冬春季低槽降水云系云水资源分析[J].山东气象, 87(22): 22-23.
[20]蔡英, 钱正安, 宋敏红, 2003.华北和西北区干湿年间水汽场及东亚夏季风的对比分析[J].高原气象, 22(1): 14-23.
[21]陈兴芳, 宋文玲, 2000.欧亚和青藏高原冬春季积雪与我国夏季降水关系的分析和预测应用[J].高原气象, 19(2): 214-222.
[22]丁一汇, 司东, 柳艳菊, 等, 2018.论东亚夏季风的特征、 驱动力与年代际变化 [J].大气科学, 42 (3): 533-558.DOI: 10.3878/j.issn.1006 -9895.1712.17261.
[23]耿蓉, 2017.基于卫星和再分析数据的大气水循环变量比较和分析[D].合肥: 中国科学技术大学, 1-52.
[24]衡志炜, 2013.基于卫星及数值模式资料的云水凝物的气候特征分析和检验[D].合肥: 中国科学技术大学, 1-104.
[25]桓玉, 李跃清, 2018.夏季东亚季风和南亚季风协同作用与我国南方夏季降水异常的关系[J].高原气象, 37(6): 1563-1577.DOI: 10.7522 /j.issn.1000-0534.2013.00033.
[26]刘菊菊, 游庆龙, 王楠, 2019.青藏高原夏季云水含量及其水汽输送年际异常分析[J].高原气象, 38(3): 449-459.DOI: 10. 7522/j.issn.1000-0534.2018.00138.
[27]陆日宇, 林中达, 张耀存, 2013.夏季东亚高空急流的变化及其对东亚季风的影响[J].大气科学, 37(2): 331-340.DOI: 10. 3878/j.issn.1006 -9895.2012.12310.
[28]刘卫国, 刘奇俊, 2007.祁连山夏季地形云结构和云微物理过程的模拟研究(I): 模式云物理方案和地形云结构[J].高原气象, 26(1): 1-15.
[29]潘留杰, 张宏芳, 朱伟军, 等, 2013.ECMWF模式对东北半球气象要素场预报能力的检验[J].气候与环境研究, 18(1): 111-123.DOI: 10.3878 /j.issn.1006-9585.2012.11097.
[30]孙建奇, 王会军, 2006.东北夏季气温变异的区域差异及其与大气环流和海表温度的关系[J].地球物理学报, 49 (3): 662-671.
[31]石晓兰, 杨青, 姚俊强, 等, 2016.基于ERA-Interim资料的中国天山山区云水含量空间分布特征[J].沙漠与绿洲气象, 10(2): 50-56.DOI: 10.3969/j.issn.1002-0799.2016.02.008.
[32]施能, 魏风英, 封国林, 等, 1997.气象场相关分析及合成分析中蒙特卡洛检验方法及应用[J].南京气象学院学报, 20(3): 355-359.
[33]谭桂容, 张文正, 2018.中国冬季地面气温10~30 d低频变化及其与乌拉尔山环流的关系[J].大气科学学报, 41(4): 502-512.DOI: 10.13878 /j.cnki.dqkxxb.20161115001.
[34]王遵娅, 丁一汇, 2009.夏季亚洲极涡的长期变化对东亚环流和水汽收支的影响[J].地球物理学报, 52(1): 20-29.
[35]王怀娟, 2015.中国区域大气水汽变化的分析与模拟研究[D].兰州: 兰州大学.
[36]魏凤英, 1999.现代气候统计诊断与预测技术[M].北京: 气象出版社, 1-200.
[37]吴洪宝, 吴蕾, 2005.气候变率诊断和预测方法[M].北京: 气象出版社, 114-144.
[38]王蕊, 王慧, 李栋梁, 2019.中国西北地区东部盛夏降水特征及对初春地表感热异常的响应[J].高原气象, 38(6): 1241-1250.DOI: 10.7522 /j.issn.1000-0534.2018.00153.
[39]俞亚勋, 王式功, 钱正安, 等, 2013.夏半年西太副高位置与东亚季风雨带(区)的气候联系[J].高原气象, 32(5): 1510-1525.DOI: 10.7522 / j.issn.1000-0534.2013.00033.
[40]张家宝, 史玉光, 2002.新疆气候变化及短期气候预测研究[M].北京: 气象出版社, 103-105.
文章导航

/