为加深了解强对流的机制和特点, 弥补雷达探测能力的不足, 针对一次由3条阵风锋共同触发强对流过程, 利用业务中尺度模式WRF进行了数值模拟, 通过经本地化改进的指数探索触发关键因素, 并与雷达探测资料对比分析。结果表明: (1)本地业务模式对此次过程天气背景与关键系统具有一定的模拟效果, 但把握对流单体的能力十分有限, 需辅以其他参数方可揭示新生雷暴触发机制。(2)本地化改进Micro Burst Index(MBI)与Turbulent Kinetic Energy(TKE)相互印证, 体现了对流与阵风锋的重要特征。MBI高值区的范围、 强度与原生对流特征相符, 外缘与阵风锋位置吻合, 强内核面积与各阵风锋强度一致, 反映出各阵风锋及其触发能力存在差异。(3)3条阵风锋及MBI强度、 850 hPa风场和下垫面特征的不同, 决定了阵风锋各个交汇点是否触发新生对流, 以及新生对流的强度与传播方式的不同。(4) 强迫上升由3部分组成, 其中阵风锋沿地形强迫上升贡献占垂直运动的1.1%, 围拢挤压占40.9%, 阵风锋的直接强迫最强占58.0%。上述共同作用导致强烈的上升运动, 促使地表空气上升到海拔4300 m远超出LFC, 并与局地水汽条件相配合, 是触发异常强烈新生对流的关键。大气低层自东向西传播的重力波也有利于新生对流的触发。(5) MBI计算简单方便, 可揭示模式难以直接反映的重要特征, 经不断完善可望为无缝隙网格预报提供关键线索。
In order to further explore the mechanism of severe convection triggered by gust front in arid northwest China, overcome the radar’s incapability to detect gust front, operational numeric model mesoscale WRF is applied to simulate a severe secondary convection which propagated reversely and triggered by three gust fronts in Northwest China arid area.Locally modified index is used to investigate the key factors of triggering mechanisms and comparison analysis between simulations and radar sounding data is conducted.The results show that: (1) The mesoscale WRF model relatively well reproduces the atmospheric backgrounds, but shows a limited capability to describe the convective cells and the gust fronts directly, and it is necessary to develop specific index to reveal the mechanism of convection trigging according to local meteorological situation.(2) MBI and TKE show mutual corroboration and demonstrate the differences between the 3 gust fronts and their trigging characteristics.The areas and intensities of the modified MBI high value regions are consistent with the characteristics of original convections, the out-flow edges align with the positions of the 3 gust fronts, and the core high value areas accord with the intensities of gust fronts.(3) Comprehensive conditions of the areas and intensities of MBI relating to 3 gust fronts, wind field at 850hPa and vapor diversities of surface characteristics, leads to the capability differences of 3 colliding points which trigger secondary convections, and reveal their severities and propagation behaviors.(4) Gust fronts force causes strong updraft of 1.74 m·s-1, upraising the surface air over LFC.Orographic effect contributes 1.1% of uplift, enclosing press and directly force makes up 40.9% and 58.0% respectively.Extraordinary force and favorable vapor are keys to trigger this extreme violent secondary convection, while the gravity wave propagating east at low altitude of atmosphere is favorite to trigging.(5) The numeric simulation and MBI analysis suggest that this simple and practical index is able to depict gust front’s characteristics that are difficult for models to reflect directly.It can be expected to provide clues for seamless grid forecasting after further practice.
[1]Benjamin S J.Carlson T N, 1986.Some effects of surface heating and topography on the regional severe storm environment.Part Ι: Three-dimensional simulations[J].Monthly Weather Review, 114(1): 307-329.
[2]Bertato M, Giaiotti D B, Manzato A, al et, 2003.An interesting case of tornado in Friuli-northeastern Italy[J].Atmosphere Research, 92(1): 1-21.
[3]Bretherton C S, McCann J R, Grenier H, 2004.A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers.Part I: Description and 1D results[J].Monthly Weather Review, 132(4): 864-882.
[4]Cearns A J, Colquhoun R, 1998.Objective prediction of severe thunderstorm environments: Preliminary results linking a decision tree with an operational regional NWP model[J].Weather Forecasting, 13(8): 1078-1092.
[5]Carlson T N, 1961.Lee side frontgenesis in the Rocky Mountains[J].Monthly Weather Review, 89(1): 163-172.
[6]Ching J, Rotunno R, Le Mone M A, al et, 2014.Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models[J].Monthly Weather Review, 142(12): 3284-3302.
[7]Crook A, Tuttle J D, 1994.Numerical simulations initialized with radar-derived winds.Part II: forecasts of three gust-front cases[J].Monthly Weather Review, 122(9): 1204-1217.
[8]Diao X, Zhu J, Liu Z, 2011.Analysis of three supercell storms with Doppler weather radar data[J].Acta Meteorologica Sinica, 69(1): 85-97.
[9]Fabry F, 2006.The spatial variability of moisture in the boundary layer and its effect on convection initiation[J].Monthly Weather Review, 134(1): 79-91.
[10]Geerts B, 2001.Estimating downburst-related maximum surface wind speeds by means of proximity soundings in New South Wales, Australia[J].Weather Forecasting, 16(1): 261-269.
[11]Hobbs P V, Locatelli J D, Martine J E, 1996.A new conceptual model for cyclones generated in the lee of the Rocky Mountains[J].Bulletin of America Meteorological Society, 77(4): 1169-1178.
[12]Hong S Y, Noh Y, Dudhia J, 2006.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Monthly Weather Review, 134(9): 2318-2341.
[13]Kain J S, Coniglio M C, Correia J, al et, 2013.A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance[J].Bulletin of America Meteorological Society, 94(7): 1213-1225.
[14]Mario M M, 2017.Numerical simulations of a tornadic supercell over the Mediterranean[J].Weather Forecasting, 32(5): 1209-1226.
[15]Mark M, Roeder W, 1996.Forecasting wet microburst on the central Florida Atlantic coast in support of the United States space program[C].Preprints.18th Conference.on severe local storms, 654-658.
[16]Markowski P M, Richardson Y, Dotzek N, 2011.A numerical study of the effects of orography on supercells[J].Atmosphere Research, 100(2): 457-478.
[17]McCann D, 1994.WINDEX: A new index for forecasting microburst potential[J].Weather Forecasting, 9(3): 532-541
[18]Olson D A, Junker N W, Korty B, 1995.Evaluation of 33 years of quantitative precipitation forecasting at the NMC[J].Weather Forecasting, 10(3): 498-511.
[19]Rochetin N, Couvreux F, Grandpeix J Y, al et, 2014.Convection triggering by boundary layer thermals.Part I: LES analysis and stochastic triggering formulation[J].Journal of Atmospheric Sciences, 71(2): 496-514.
[20]Steenburgh W J, Mass C F, 1994.The structure and evolution of a simulated Rocky mountain lee trough[J].Monthly Weather Review, 122(9): 2740-2761.
[21]Sun J, Crook A, 1994.Wind and thermodynamic retrieval from single-Doppler measurements of a gust front observed during Phoenix II[J].Monthly Weather Review, 122(4): 1075-1091.
[22]Wakimoto R M, 2001.Convectively driven high wind events, severe convective storms[J].Meteorology Monography., 50(2): 255-298.
[23]Weaver J F, Nelson S T, 1982.Multiscale aspects of thunderstorm gust fronts and their effects on subsequent storm development[J].Monthly Weather Review, 110(1): 707-718.
[24]William A, Gallus G, Correia J, al et, 2005.The 4 June 1999 Derecho event: A particularly difficult challenge for Numerical weather prediction[J].Weather Forecasting, 20(3): 705-728.
[25]Xu Q, Gu H, Qiu H, 2001.Simple adjoint retrievals of wet-microburst winds and gust-front winds from single-Doppler radar data[J].Journal of Applied Meteorology, 40(5): 1485-1499.
[26]陈明轩, 肖现, 高峰, 2017.出流边界对京津冀地区强对流局地新生及快速增强的动力效应[J].大气科学, 41(5): 897-917.
[27]符式红, 王秀明, 俞小鼎, 2018.相似环流背景下海南两次不同类型强对流天气对比研究[J].气象学报, 76(5): 742-754.
[28]高晓梅, 俞小鼎, 王令军, 等, 2018.鲁中地区分类强对流天气环境参量特征分析[J].气象学报, 76(2): 196-212.
[29]胡文东, 陈晓光, 刘建军.2003.宁夏夏季逐时降水与地球同步气象卫星红外资料的关系分析[J].宁夏工程技术, 2(4): 310-314
[30]胡文东, 陶林科, 杨侃, 等, 2008.西北干旱区一次阵风锋天气过程分析[J].中国沙漠, 28(2): 349-356.,
[31]胡文东, 杨侃, 黄小玉, 等, 2015.一次阵风锋触发强对流过程雷达资料特征分析[J].高原气象, 34(5): 1452-1464.DOI: 10. 7522/j.issn.1000-0534.2014.00099.
[32]姜平, 刘晓冉, 朱浩楠, 等, 2019.复杂地形下局地山谷风环流的理想数值模拟[J].高原气象, 38( 6): 1272-1282.DOI: 10.7522/j.issn.1000-0534.2019.00019.
[33]马铮, 沈新勇, 黄文彦, 等, 2017.一次梅雨锋暴雨的边界层热通量输送与湍流动能收支分析[J].气象科学, 37(6): 753-765.
[34]陶局, 易笑园, 赵海坤, 等, 2019.一次飑线过程及其受下垫面影响的数值模拟[J].高原气象, 38( 4): 756-772.DOI: 10. 7522 /j.issn.1000-0534.2019.00035.
[35]王秀明, 俞小鼎, 2019.热带一次致灾龙卷形成物理过程研究[J].气象学报, 77(3): 387-404,
[36]王彦, 高守亭, 梁钊明, 2014.渤海湾海风锋触发雷暴的观测和模拟分析[J].高原气象, 33(3): 848-854.DOI: 10.7522 /j.issn. 1000-0534.2013.00030.
[37]吴举秀, 周青, 杨传凤, 等, 2017.2015年7月14日阵风锋及锋后大风多普勒天气雷达产品特征分析[J].高原气象, 36(4): 1082-1090.DOI: 10.7522 /j.issn.1000-0534.2016.00090.
[38]武麦凤, 吉庆, 武维刚, 2017.一次槽前“干”对流背景下阵风锋天气过程分析[J].高原气象, 36(3): 845-851.DOI: 10.7522/j.issn.1000-0534.2016.00055.
[39]夏文梅, 慕熙昱, 徐琪, 等, 2011.一次阵风锋过程的数值模拟与分析[J].高原气象, 30(4): 1087-1095.
[40]杨显玉, 文军, 牛广山, 等, 2020.西北地区的快速更新循环同化预报系统性能检验和评估[J].高原气象, 39(1): 90-101.DOI: 10.7522/j.issn.1000-0534.2019.00010.
[41]肖云清, 胡文东, 赵立斌, 等, 2008.宁夏中北部两次强暴雨过程综合对比分析[J].高原气象, 27(3): 576-583.
[42]许晨璐, 王建捷, 黄丽萍, 2017.千米尺度分辨率下GRAPES Meso4.0模式定量降水预报性能评估[J].气象学报, 75(6): 851-876.
[43]杨侃, 郭建茂, 冯双磊, 等, 2019.C波段雷达快速循环同化技术在宁夏降水天气预报中的应用[J].科学技术与工程, 19(1): 44-50.
[44]杨侃, 纪晓玲, 毛璐, 等, 2020.异常环流背景下贺兰山地形对8.21特大致洪暴雨的影响分析[J].自然灾害学报, 29(01): 132-142.
[45]俞小鼎, 周小刚, 王秀明, 2012.雷暴与强对流临近天气预报技术进展[J].气象学报, 70(3), 311-337.
[46]岳彩军, 袁招洪, 陶岚, 等, 2016.上海地区一次阵风锋结构特征与动量收支诊断分析[J].高原气象, 35(3): 788-799.DOI: 10.7522/j.issn.1000-0534.2015.00019.
[47]张君霞, 黄倩, 田文寿, 等, 2018.对流冷池对黑风暴沙尘抬升和传输影响的大涡模拟研究[J].高原气象, 37( 3): 850-862.DOI: 10.7522/j.issn.1000-0534.2018.00046.
[48]赵庆云, 张武, 陈晓燕, 等, 2018.一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J].高原气象, 37( 3): 767-776.DOI: 10.7522/j.issn.1000-0534.2017.00068.
[49]郑媛媛, 俞小鼎, 方翀, 等, 2004.一次典型超级单体风暴的多普勒天气雷达观测分析[J].气象学报, 62(1): 62-73.