利用区域性极端事件客观识别方法(OITREE)和1961 -2018年西南地区东部118站逐日降水资料对该区域近58年的区域性暴雨事件进行了识别, 确定了相应的OITREE方法的参数组, 共识别得出246次区域性暴雨事件, 其中25次达到极端强度, 2004年9月3 -6日发生的区域性暴雨事件是西南地区东部近58年来综合强度最强的一次区域性暴雨事件。进一步分析表明: 西南地区东部区域性暴雨事件的持续时间主要为2天, 最长为5天; 事件的累积强度集中在500~1000 mm之间, 累积面积集中在10×104~20×104 km2。西南地区东部区域性暴雨事件多发于5 -9月, 其中7月最多, 占总发生频次的31.7%。四川东部和重庆西部的平原区是暴雨事件的频发和强度中心地区。近58年西南地区东部持续性区域暴雨事件增多[0.57 次·(10a)-1], 持续时间延长[1.2 d·(10a)-1], 最大影响范围扩大[5.7×104 km2·(10a)-1], 极端强度也增强[73.4 mm·(10a)-1]。
The regional heavy rainfall events (RHREs) were identified by using the Objective Identification Technique for Regional Extreme Events (OITREE) based on the daily precipitation data of 118 stations in eastern Southwest China (ESWC) from 1961 to 2018.The parameters related to OITREE method were determined.There are 246 RHREs in total in the ESWC from 1951 to 2018, of which 25 are extreme RHREs.The strongest RHRE occurred on 3-6 September 2004, detected by the comprehensive intensity.Further analysis shows that the duration of the RHREs in the ESWC is generally 2 days and the longest duration is 5 days.The cumulative intensity of RHREs is about 500~1000 mm, and the cumulative area is about 10×104~20×104 km2.RHREs in the ESWC occur frequently from May to September, with the highest frequency of the RHREs in July, accounting for 31.7% of the total occurrence frequency.The plain areas in eastern Sichuan and western Chongqing are the center areas with the highest frequency and intensity of RHREs.During the past 58 years, the number of persistent RHREs in the ESWC shows a significant increasing trend at the rate of 0.57 times per decade.Also, the duration, the maximum impacted area and the extreme precipitation of the RHREs are all show a significant increasing trend at the rate of 1.2 d·(10a)-1, 5.7×104 km2·(10a)-1 and 73.4 mm·(10a)-1, respectively.
[1]Cheng X L, Li Y Q, Xu L, 2016.An analysis of an extreme rainstorm caused by the interaction of the Tibetan Plateau vortex and the southwest China vortex from an intensive observation[J].Meteorology and Atmospheric Physics, 128(3): 373-399.
[2]Pendergrass A G, Hartmann D L, 2014.Changes in the distribution of rain frequency and intensity in response to global warming[J].Journal of Climate, 27(22): 8372-8383.
[3]Ren F M, Cui D L, Gong Z Q, al et, 2012.An objective identification technique for regional extreme events[J].Journal of Climate, 25(20): 7015-7027.
[4]Tang Y B, Gan J J, Zhao L, al et, 2006.On the climatology of persistent heavy rainfall events in China[J].Advances in Atmospheric Sciences, 23(5): 678-692.
[5]Trenberth K E, 2011.Changes in precipitation with climate change[J].Climate Research, 47(1/2): 123-138.
[6]Wang Y J, Ren F M, Zhang X B, 2014.Spatial and temporal variations of regional high temperature events in China[J].International Journal of Climatology, 34(10): 3054-3065.
[7]Zhang Y, Xia J, She D X, 2019.Spatiotemporal variation and statistical characteristic of extreme precipitation in the middle reaches of the Yellow River Basin during 1960-2013[J].Theoretical and Applied Climatology, 135(1/2): 391-408.
[8]Zou X K, Ren F M, 2015.Changes in regional heavy rainfall events in China during 1961-2012[J].Advances in Atmospheric Sciences, 32(5): 704-714.
[9]蔡贤儒, 杜新鹤, 虞志坚, 等, 1993.长江中游“89.7”暴雨洪水分析[J].水文(5): 52-57.
[10]陈丹, 周长艳, 熊光明, 等, 2018.近53年四川盆地夏季暴雨变化特征分析[J].高原气象, 37(1): 197-206.DOI: 10.7522/j.issn. 1000-0534.2017.00022.
[11]陈贵川, 谌芸, 王晓芳, 等, 2018.一次冷性停滞型西南低涡结构的演变特征[J].高原气象, 37(6): 182-196.DOI: 10.7522/j.issn. 1000-0534.2018.00093.
[12]陈艳, 丁一汇, 2006.2004年7月冷空气活动及其对西南地区强降水的影响[J].气象学报, 64(6): 743-759.
[13]戴泽军, 蔡荣辉, 彭莉莉, 等, 2019.湖南持续性区域暴雨气候特征及暴雨落区分型[J].高原气象, 38(3): 573-582.DOI: 10. 7522/j.issn.1000-0534.2018.00094.
[14]丁一汇, 2019.中国暴雨理论的发展历程与重要进展[J].暴雨灾害, 38(5): 395-406.
[15]丁一汇, 胡国权, 2003.1998年中国大洪水时期的水汽收支研究[J].气象学报, 61(2): 129-145.
[16]高珩洲, 李国平, 2020.黔东南地形影响局地突发性暴雨的中尺度天气分析与数值试验[J].高原气象, 39(2): 301-310.DOI: 10.7522/j.issn.1000-0534.2019.00079.
[17]龚志强, 王晓娟, 崔冬林, 等, 2012.区域性极端低温事件的识别及其变化特征[J].应用气象学报, 23(2): 195-204.
[18]顾清源, 周春花, 青泉, 等, 2008.一次西南低涡特大暴雨过程的中尺度特征分析[J].气象, 34(4): 39-47.
[19]郭迺辉, 周瑾, 1984.长江三峡地区1982年7月暴雨洪水分析[J].水文(1): 57-61.
[20]何光碧, 曾波, 郁淑华, 等, 2016.青藏高原周边地区持续性暴雨特征分析[J].高原气象, 35(4): 865-874.DOI: 10.7522/j.issn. 1000-0534.2015.00081.
[21]何光碧, 肖玉华, 师锐, 2019.一次伴有高原低涡和热带气旋活动的持续性暴雨过程分析[J].高原气象, 38(5): 1004-1016.DOI: 10.7522/j.issn.1000-0534.2018.00131.
[22]李娟, 孙建华, 张元春, 等, 2016.四川盆地西部与东部持续性暴雨过程的对比分析[J].高原气象, 35(1): 64-76.DOI: 10.7522/j.issn.1000-0534.2014.00150.
[23]李韵婕, 任福民, 李忆平,等, 2014.1960-2010年中国西南地区区域性气象干旱事件的特征分析[J].气象学报, 72(2): 266-276.
[24]刘金卿, 李子良, 2020.一次西南涡诱生气旋引发的湖南大暴雨个例分析[J].高原气象, 39(2): 311-320.DOI: 10.7522/j.issn. 1000-0534.2019.00028.
[25]卢萍, 李旭, 李英, 等, 2016.空间加密探空观测资料对西南低涡暴雨天气过程数值模拟的影响[J].大气科学, 40(4): 730-742.
[26]宋艳玲, 2005.四川重庆遭受暴雨袭击黑龙江广西等地有旱情——2004年9月[J].气象, 30(12): 90-91.
[27]汪汇洁, 孙建华, 卫捷, 等, 2014.近30年我国南方区域持续性暴雨过程的分类研究[J].气候与环境研究, 19(6): 713-725.
[28]王政祥, 1999.长江三峡区间“82.7”暴雨洪水分析[J].人民长江(3): 15-17.
[29]伍红雨, 邹燕, 刘慰, 2019.广东区域性暴雨过程的定量化评估及气候特征[J].应用气象学报, 30(2): 233-244.
[30]肖递祥, 杨康权, 俞小鼎, 等, 2017.四川盆地极端暴雨过程基本特征分析[J].气象, 43(10): 1165-1175.
[31]郁淑华, 高文良, 2017.高原低涡与西南涡结伴而行的不同活动形式个例的环境场和位涡分析[J].大气科学, 41(4): 831-856.
[32]袁慧敏, 王秀荣, 范广洲, 等, 2012.长江中下游沿江地区暴雨过程综合评估模型及应用[J].气象, 38(10): 1189-1195.
[33]张芳丽, 李国平, 罗潇, 2020.四川盆地东北部一次突发性暴雨事件的影响系统分析[J].高原气象, 39(2): 321-332.DOI: 10. 7522/j.issn.1000-0534.2019.00080.
[34]张琪, 李跃清, 2014.近48年西南地区降水量和雨日的气候变化特征[J].高原气象, 33(2): 372-383.DOI: 10.7522/j.issn.1000-0534.2013.00032.
[35]赵思雄, 傅慎明, 2007.2004年9月川渝大暴雨期间西南低涡结构及其环境场的分析[J].大气科学, 31(6): 1059-1075.
[36]周玉淑, 颜玲, 吴天贻, 等, 2019.高原涡和西南涡影响的两次四川暴雨过程的对比分析[J].大气科学, 43(4): 813-830.
[37]宗志平, 张小玲, 2005.2004年9月2~6日川渝持续性暴雨过程初步分析[J].气象, 31(5): 37-41.
[38]邹燕, 叶殿秀, 林毅, 等, 2014.福建区域性暴雨过程综合强度定量化评估方法[J].应用气象学报, 25(3): 360-364.