论文

西安连续两天短时暴雨的对流条件及触发机制对比分析

  • 赵强 ,
  • 王楠 ,
  • 高星星 ,
  • 陈小婷
展开
  • <sup>1.</sup>陕西省气象台,陕西 西安 710014;<sup>2.</sup>秦岭和黄土高原生态环境气象重点实验室,陕西 西安 710016

收稿日期: 2019-10-14

  网络出版日期: 2021-08-28

基金资助

秦岭和黄土高原生态环境气象重点实验室开放研究课题(2019Z-1);中国气象局预报员专项(CMAYBY2019-116)

Comparative Analysis of Convective Conditions and Triggering Mechanisms of Short-term Rainstorm in Xi'an on Two Consecutive Days

  • Qiang ZHAO ,
  • Nan WANG ,
  • Xingxing GAO ,
  • Xiaoting CHEN
Expand
  • <sup>1.</sup>Shaanxi Meteorological Observatory,Xi'an 710014,Shaanxi,China;<sup>2.</sup>Key Laboratory of Eco-Environment and Meteorology for the Qinling Mountains and Loess Plateau,Xi'an 710016,Shaanxi,China

Received date: 2019-10-14

  Online published: 2021-08-28

摘要

2015年8月2 -3日西安地区连续两天出现了短时暴雨天气, 引发山洪和泥石流, 造成铁路中断和人员伤亡。本文利用常规观测资料、 卫星云图及西安站的多普勒雷达资料、 欧洲中期天气预报中心(ECMWF)再分析资料(0.25°×0.25°), 对两次过程的对流条件和触发机制进行对比分析。结果表明: 两天的对流条件有明显区别, 2日西安为副热带高压(简称副高)控制, 高温高湿, 地面温度达39 ℃, 能量充沛, 对流有效位能(CAPE)值大于2000 J·kg-1, 地面到850 hPa大气垂直温度递减率接近超绝热状态, 非常利于对流触发; 3日高原槽东移, 西安位于低槽和副高之间冷暖空气交汇区, 地面上陕北有冷锋南压, 近地面层不稳定度降低, 低层冷平流比2日有明显增强, 地面温度降至30 ℃, CAPE值800 J·kg-1。对比来看, 3日气温、 不稳定能量较2日有显著降低, 但天气尺度系统强迫更强。触发机制分析显示: 2日下午地面辐合线在延安触发对流, 向南移动过程中产生冷池, 出流的阵风锋在西安触发新生对流, 由于西安地区水汽含量大, 能量充足, 对流回波维持时间长, 产生短时暴雨, 1 h降水量高达47.2 mm, 而3日下午的暴雨是由冷锋触发, 强锋生区域与低层冷平流区域对应较好, 位于近地面层到850 hPa, 锋生次级环流诊断发现, 地面到850 hPa由于锋生造成的垂直运动, 使得气块克服对流抑制抬升到自由对流高度, 触发不稳定能量释放, 产生强降水, 冷锋南压过程中由于秦岭的阻挡作用, 在沿山北麓边界层形成急流, 沿着急流强雷暴单体不断生成并在向东移动过程中形成列车效应, 造成山区的大暴雨。

本文引用格式

赵强 , 王楠 , 高星星 , 陈小婷 . 西安连续两天短时暴雨的对流条件及触发机制对比分析[J]. 高原气象, 2021 , 40(4) : 801 -814 . DOI: 10.7522/j.issn.1000-0534.2020.00053

Abstract

Using conventional observation data, satellite cloud images, doppler radar data of Xi'an station and ECMWF reanalysis data (0.25°×0.25°), the convective environmental conditions and triggering mechanism of two short-term rainstorms which occurred in Xi'an on 2 and 3 August 2015, causing flash floods and mudslides and resulting in railway interruption and casualties were comparative analyzed.Results show that atmospheric environment conditions are obviously different.Xi'an is controlled by subtropical high, has high temperature and humidity and ground temperature reaches 39 ℃, CAPE value is more than 2000 J·kg-1.The decline rate of vertical temperature from ground to 850 hPa is close to superadiabatic state, which is very conducive to the triggering of convection on 2 August 2015.However, on 3 August 2015, Xi'an is located at the intersection of cold and warm air between the trough and subtropical high.There is a ground cold front moving southward in northern Shaanxi and air instability near surface layer decreases.Cold advection is stronger and ground temperature drops to 30 ℃, CAPE value is 800 J·kg-1.The synoptic scale system forcing is stronger on 3 August, although the temperature and unstable energy are significantly lower than those on 2 August.From the perspective of triggering mechanism, the surface convergence line triggers convection in the afternoon of 2 August in Yan'an and produces cold pool in the process of moving southward.The gust front of outflow triggers new convection, due to the large water vapor content and sufficient energy around Xi'an area, short-term rainstorm is generated and hourly precipitation is as high as 47.2 mm.However, the rainstorm in the afternoon of 3 August is triggered by cold front.Strong frontogenesis area corresponds well with the low-level cold advection area, which locates in the near-surface layer to 850 hPa.Diagnosis result indicated that vertical movement from ground to 850 hPa caused by frontogenesis secondary circulation makes the air mass overcome convective inhibition energy and rise to the level of free convection, which makes unstable energy release and produces heavy precipitation.During the process of cold front moving southward, due to the blocking effect of Qinling Mountains, a jet stream is formed in the boundary layer along the northern foot of Qinling Mountains.Strong thunderstorms continuously generated along the jet stream and train effect formed during the strom moving eastward, which causes heavy rain in the mountains.

参考文献

[1]Doswell C A, 2003.Societal impacts of severe thunderstorms and tornadoes: Lessons learned and implications for Europe[J].Atmospheric Research, 67(23): 135-152.DOI: 10.1016/S0169-8095(03)00048-6.
[2]Shapiro M A, 1988.Forntogenesis and geostrophically forced secondary circulations in the vicinity of jet stream-frontal zone systems[J].Journal of the Atmospheric Sciences, 45(6): 915-930.DOI: 10.1175/1520-0469(1981)038<0954: FAGFSC>2.0.CO; 2.
[3]Weckwerth, Tammy M, Wilson J W, al et, 1997.Horizontal convective rolls: determining the environmental conditions supporting their existence and characteristics[J].Monthly Weather Review, 125(4): 505-526.DOI: 10.1175/1520-0493(1997)125<0505: HCRDTE >2.0.CO; 2.
[4]Wilson J W, Megenhardt D L, 1997.Thunderstorm initiation, organization, and lifetime associated with florida boundary layer convergence lines[J].Monthly Weather Review, 125(7): 1507-1525.DOI: 10.1175/1520-0493(1997)1252.0.CO; 2.
[5]毕宝贵, 刘月巍, 李泽椿, 2006.秦岭大巴山地形对陕南强降水的影响研究[J].高原气象, 25(3): 485-494.
[6]陈涛, 代刊, 张芳华, 2013.一次华北飑线天气过程中环境条件与对流发展机制研究[J].气象, 39(8): 945-954.DOI: 10.7519/j.issn.1000-0526.2013.8.001.
[7]丁一汇, 2014.陶诗言先生在中国暴雨发生条件和机制研究中的贡献[J].大气科学, 38(4): 616-626.DOI: 10.3878/j.issn.1006-9895.2013.13226.
[8]杜继稳, 2010.降雨型地质灾害预报预警-以黄土高原和秦巴山区为例[M].北京: 科学出版社, 8-17.
[9]顾清源, 肖递祥, 黄楚惠, 等, 2009.低空急流在副高西北侧连续性暴雨中的触发作用[J].气象, 35(4): 59-67.DOI: 10.7519/j.issn.1000-0526.2009.4.008.
[10]郭英莲, 王继竹, 李才媛, 等, 2014.锋生作用对2011年梅汛期湖北暴雨的影响[J].气象, 40(1): 86-93.DOI: 10.7519/j.issn. 1000-0526.2014.01.010.
[11]何光碧, 肖玉华, 师锐, 2019.一次伴有高原低涡和热带气旋活动的持续性暴雨过程分析[J].高原气象, 38(5): 1004-1016.DOI: 10.7522 /j.issn.1000-0534.2018.00131.
[12]侯淑梅, 郭俊建, 张磊, 等, 2017.西风槽与副高相互作用的暴雨过程动热力场结构特征分析[J].气象, 43(2): 151-165.
[13]李强, 王秀明, 张亚萍, 等, 2019.一次副高影响下的局地强风暴触发及维持机制探析[J].气象, 45(2): 203-215.
[14]刘还珠, 王维国, 邵明轩, 等, 2007.西太平洋副热带高压影响下北京区域性暴雨的个例分析[J].大气科学, 31(4): 727-734.
[15]慕熙昱, 徐琪, 潘玉洁, 等, 2019.雷达径向速度资料同化中不同坐标转换方案的对比试验[J].高原气象, 38(3): 625-635.DOI: 10.7522 /j.issn.1000-0534.2019.00012.
[16]苏东生, 文莉娟, 赵林, 等, 2019.青海湖夏秋季局地气候效应数值模拟研究[J].高原气象, 38(5): 944-958.DOI: 10.7522 /j.issn.1000-0534.2018.00125.
[17]陶诗言, 卫捷, 张小玲, 2008.2007年梅雨锋降水的大尺度特征分析[J].气象, 34(4): 3-15.
[18]王楠, 李萍云, 井宇, 等, 2016.黄土高原一次超级单体短时强降水中尺度分析[J].气象科学, 36(6): 742-751.DOI: 10.3969/2016jms.0032.
[19]王楠, 赵强, 井宇, 等, 2018.秦岭北麓一次冷锋触发的短时强降水成因分析[J].高原气象, 37(5): 1277-1288.DOI: 10.7522/j.issn.1000-0534.2017.00070.
[20]朱平, 俞小鼎, 2019.青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J].高原气象, 38(1): 1-13.DOI: 10. 7522/j.issn.1000-0534.2018.00070.
[21]徐玉霞, 2017.基于GIS的陕西省洪涝灾害风险评估及区划[J].灾害学, 32(2): 103-108.DOI: 10.3969/j.issn.1000-811X.2017. 02.018.
[22]徐远波, 尹恒, 谭永秀, 等, 2009.副高边缘一次局地突发性大暴雨过程的中尺度分析[J].暴雨灾害, 28(1): 60-65.DOI: 10. 3969/j.issn.1004-9045.2009.01.009.
[23]俞小鼎, 2012.2012年7月21日北京特大暴雨成因分析[J].气象, 38(11): 1313-1329.DOI: 10.7519/j.issn.1000-0526.2012. 11.001.
[24]张芳丽, 李国平, 罗潇, 2020.四川盆地东北部一次突发性暴雨事件的影响系统分析[J].高原气象, 39(2): 321-332.DOI: 10. 7522/j.issn.1000-0534.2019.00080.
[25]赵强, 王建鹏, 王楠, 等, 2017a.2012年夏季秦巴山区暴雨过程的地形作用诊断[J].气象科技, 45(1): 139-147.DOI: 10. 19517/j.1671-6345.20160108.
[26]赵强, 王楠, 李萍云, 等, 2017b.两次陕北暴雨过程热力动力机制诊断[J].应用气象学报, 28(3): 340-356.DOI: 10.11898/1001-7313.20170308.
[27]周鸣盛, 1993.我国北方50次区域性特大暴雨的环流分析[J].气象, 19(7): 14-18.DOI: 10.7519/j.issn.1000-0526.1993. 7.003.
[28]周淑玲, 闫淑玲, 张灿, 2009.2007年8月10—12日山东半岛持续性大暴雨的维持机制分析[J].热带气象学报, 25(5): 628-634.
文章导航

/