论文

基于加密观测的一次极端雨雪过程积雪特征分析

  • 杨成芳 ,
  • 赵宇
展开
  • <sup>1.</sup>山东省气象防灾减灾重点实验室,山东 济南 250031;<sup>2.</sup>山东省气象台,山东 济南 250031;<sup>3.</sup>南京信息工程大学气象灾害预报预警与评估协同创新中心/气象灾害教育部重点实验室,江苏 南京 210044

收稿日期: 2020-05-18

  网络出版日期: 2021-08-28

基金资助

国家自然科学基金项目(41975055);中国气象局预报员专项(CMAYBY2018-042)

Study on Snow Cover Characteristic of Extreme Rain-snow Event based on Intensive Observation Data

  • Chengfang YANG ,
  • Yu ZHAO
Expand
  • <sup>1.</sup>Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong,Jinan 250031,Shandong,China;<sup>2.</sup>Shandong Meteorological Observatory,Jinan 250031,Shandong,China;<sup>3.</sup>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD)/Key Laboratory of Meteorological Disaster,Ministry of Education(KLME)),Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China

Received date: 2020-05-18

  Online published: 2021-08-28

摘要

利用降水现象仪、 地面自动站、 人工加密积雪深度逐时观测资料及NCEP/NCAR 1°×1°再分析资料, 对山东2020年1月5 -7日罕见雨雪过程的积雪特征及温度影响机制进行了分析。结果表明: (1)降水量突破同期历史极值导致此次雨雪过程成为极端天气事件, 地面影响系统为江淮气旋, 冷平流较弱, 积雪深度是预报难点。(2)整个过程全省各站的平均降雪含水比为0.46 cm·mm-1, 低于过去20年间的江淮气旋暴雪过程。(3)积雪深度与高空温度、 相对湿度和垂直速度的配置有关, 在最大上升运动与90%以上相对湿度的叠置层次内, 如果环境温度有利于树枝状冰晶增长则积雪深度和降雪含水比大, 而环境温度适合空心柱状冰晶增长的则积雪深度小; 云下温度高于0 ℃使得积雪深度减小。(4)积雪深度与近地面温度的关系表现为: 气温低于0.5 ℃可形成有量积雪; 0 cm地温对积雪的影响表现在积雪产生之前, 降至0.4 ℃以下可形成有量积雪; 雪面温度在产生积雪前后的2 h内维持在0 ℃左右, 其他时段变化与气温类似。(5)降雪含水比基本上随着气温的升高而减小, 在0.5 cm·mm-1以上时一般降雪期间气温低于0.4 ℃。该个例揭示了积雪深度和降雪含水比的预报需要综合考虑高低空气象条件。

本文引用格式

杨成芳 , 赵宇 . 基于加密观测的一次极端雨雪过程积雪特征分析[J]. 高原气象, 2021 , 40(4) : 853 -865 . DOI: 10.7522/j.issn.1000-0534.2020.00072

Abstract

Diagnostic analysis has been performed to study the characteristics of snow cover and contributing factor of temperature in an extreme rain-snow event over Shandong Province during 5 -7 January 2020 by hourly precipitation measurement instrument, automatic weather stationintensive snow depth observation data and NCEP/NCAR 1°×1° reanalysis data.Main results are as follows: (1) The rain-snow process is an extreme weather event caused by Jianghuai cyclone with weak cold advection and severe precipitation.So snow depth has presented a challenge to forecasters.(2)The averaged snow-liquid ratio in Shandong Province is 0.46 cm·mm-1, less than that average of all snowstorms produced by Jianghuai cyclone over the past 20 years.(3) Snow depth is related to configuration of temperature, relative humidity and vertical velocity in upper level.The environment temperature at the level where maximum ascending motion accompanied relative humidity larger than 90% is favorable to branch ice crystal growth, while that with large snow depth and snow-liquid ratio is favorable to hollow columnar ice crystal growth.Temperature under the cloud higher than 0 ℃ can decrease snow depth.(4) The relationship between surface temperature and snow depth shows that obvious snow cover can form with the temperature of most stations lower than 0.5 ℃ and ground surface temperature at 0 cm lower than 0.4 ℃.The impact of ground surface temperature occurs before snow cover forms.Snow surface temperature maintains about 0 ℃ in 2 h prior to or after the formation of obvious snow cover, similar to air temperature in other time.(5) Generally, snow-liquid ratio decreases with air temperature increasing, with air temperature lower than 0.4 ℃ when the snow-liquid ratio is larger than 0.5 cm·mm-1 during snowfall.The analysis of this snowstorm event revealed that forecasting snow depth and snow-liquid ratio need to consider various meteorological conditions.

参考文献

[1]Alcott T I, Steenburgh W J, 2010.Snow-to-liquid ratio variability and prediction at a high-elevation site in Utah's Wasatch mountains[J].Weather Forecasting, 25(1): 323-337.
[2]Auer A H, White J M, 1982.The combined role of kinematics, hermodynamics, and cloud physics associated with heavy snowfall episodes[J].Journal of the Meteorological Society of Japan, 60: 500-507.
[3]Baxter M A, Graves C E, Moore J T, 2005.A Climatology of snow-to-liquid ratio for the contiguous United States[J].Weather Forecasting, 20(5): 729-744.
[4]Dube I, Rimouski E, 2003.From mm to cm study of snow/liquid water ratios in Quebec[OL].MSC-Quebec region,
[5]Fukuta N, Takahashi T, 1999.The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies[J].Journal of the Atmospheric Science, 56(12): 1963-1979.
[6]Houze R A, 1993.Cloud Dynamics[M].Academic Press, 573.
[7]Magono C, Lee C, 1966.Meteorological classification of natural snow crystals[J].Journal of Faculty Science Hokkaido University, 2(4): 322-335.
[8]Nakaya U, 1954.Snow Crystals, natural and artificial[M].Harvard: Harvard University Press, 510.
[9]Power B A, Summers P W, Avignon J D, 1964.Snow crystal forms and riming effects as related to snowfall density and general storm conditions[J].Journal of the Atmospheric Science, 21(3): 300-305.
[10]除多, 边巴次仁, 扎珠, 等, 2018.SR-50A超声雪深仪在西藏高原的适用性研究[J].高原气象, 37(2): 382-393.DOI: 10. 7522/j.issn.1000-0534.2017.00037.
[11]崔锦, 周晓珊, 阎琦, 等, 2015.沈阳降雪含水比变化特征及其大气影响因子[J].冰川冻土, 37(6): 1508-1514.
[12]崔锦, 张爱忠, 阎琦,等, 2019.2009-2017年辽宁省降雪含水比变化特征研究[J].冰川冻土, 41(4): 828-835.
[13]杜波, 马舒庆, 梁明珠, 等, 2017.雨滴谱降水现象仪对比观测试验技术应用分析[J].气象科技, 45(6): 995-1001.
[14]杜传耀, 尹隹莉, 李林, 等, 2019.降水现象仪观测应用评估[J].气象, 45(5): 730-737.
[15]杜佳, 杨成芳, 戴翼, 等, 2019.北京地区4月一次罕见暴雪的形成机制分析[J].气象, 45(10): 1363-1374.
[16]侯冰飞, 姜超, 孙建新, 2019.基于雪雨比的黑龙江省降水相态变化特征分析[J].高原气象, 38(4): 781-793.DOI: 10.7522/j.issn.1000-0534.2018.00103.
[17]姜有山, 束宇, 李力, 等, 2017.基于湿位涡和积雪效率的降雪预报技术探讨[J].气象科学, 37(5): 659-665.
[18]李丹华, 文莉娟, 隆霄, 等, 2017.积雪对玛曲局地微气象特征影响的观测研究[J].高原气象, 36(2): 330-339.DOI: 10.7522/j.issn.1000-0534.2016.00074.
[19]李德俊, 熊守权, 柳草, 等, 2014.鄂西北两次强降雪的滴谱特征和积雪深度预估方法[J].气象, 40(5): 612-618.
[20]马吉晖, 李玉香, 2012.通化地区积雪深度预报方法研究及服务对策[J].吉林气象, 4: 29-33.
[21]秦庆昌, 张琳娜, 于佳, 等, 2019.北京地区两次雨雪转换过程的相态模拟研究[J].高原气象, 38(5): 1027-1037.DOI: 10.7522/j.issn.1000-0534.2018.00124.
[22]王健, 张月华, 谭艳梅, 2018.乌鲁木齐冬季清雪预报服务研究[J].沙漠与绿洲气象, 12(1): 82-85.
[23]王一颉, 赵桂香, 马严枝, 2019.降水相态转换机制及积雪深度预报技术研究[J].干旱气象, 37(6): 964-971.
[24]吴书成, 邱杰, 吴静, 等, 2017.浙江省自动雪深观测数据质量分析[J].气象科技, 45(4): 616-621.
[25]武威, 胡燕平, 2019.沙颍河流域一次基于高分辨资料的降水相态分析[J].高原气象, 38(5): 983-992.DOI: 10.7522/j.issn. 1000-0534.2018.00128.
[26]肖雄新, 张廷军, 2018.基于被动微波遥感的积雪深度和雪水当量反演研究进展[J].地球科学进展, 33(6): 590-605.
[27]杨成芳, 刘畅, 2019.-次江淮气旋暴雪的积雪特征及气象影响因子分析[J].气象, 45(2): 191-202.
[28]杨成芳, 朱晓清, 2020.山东降雪含水比统计特征分析[J].海洋气象学报, 40(1): 48-57.
[29]杨琨, 薛建军, 2013.使用加密降雪资料分析降雪量和积雪深度关系[J].应用气象学报, 24(3): 349-355.
[30]翟亮, 郭淳薇, 马新成, 等, 2018.北京2016年“11·20”初雪预报偏差分析[J].气象, 44(1): 151-158.
[31]张娟, 徐维新, 王力, 等, 2018.三江源腹地玉树地区动态融雪过程及其与气温关系分析[J].高原气象, 37(4): 936-945.DOI: 10.7522/j.issn.1000-0534.2018.00001.
[32]周扬, 徐维新, 白爱娟, 等, 2017.青藏高原沱沱河地区动态溶血过程及其与气温关系分析[J].高原气象, 36(1): 24-32.DOI: 10.7522/j.issn.1000-0534.2016.00013.
文章导航

/