基于1980 -2017年陕西省地面气象观测站观测资料、 NCEP/NCAR月平均再分析资料和日本JRA-55再分析陆地雪深资料, 对1980 -2016年陕西冬季霾日数的时空变化及可能原因进行了分析。根据陕西冬季霾日数偏多年与偏少年的高度场环流背景, 研究了影响陕西省冬季霾日数的主要环流系统。对欧亚大陆积雪深度分布对于陕西省冬季霾日数的影响进行了探讨。研究表明: (1)乌拉尔山地区的500 hPa高度场负(正)异常中心, 是有利于陕西省冬季霾日数增多(减少)的大气背景环流, 影响陕西省霾日数变化的海平面气压存在地中海地区与中亚至西伯利亚地区反位相变化的特征。(2)欧洲地区积雪深度增加(减小), 会造成陕西省冬季霾日数的减少(增多)的气象条件。(3)欧亚大陆积雪深度分布与陕西省冬季霾日数的相关呈现欧洲地区与西伯利亚地区反位相的分布, 冬季积雪深度指数与陕西省冬季霾日数相关大于0.41, 积雪深度指数正(负)异常会造成乌拉山地区位势高度负(正)异常, 不利于(有利于)冷空气向东亚移动, 造成有利于陕西省冬季霾日数的增多(减少)的气象条件。
Based on daily observations from ground-level stations, monthly NCEP/NCAR reanalysis dataset and JRA-55 snow depth dataset, the interannual variation characteristics of haze days in Shaanxi province and the variations reason were analyzed.According to the background of the height field circulations of winter haze days in Shaanxi province, the main circulations systems affecting the number of winter haze days in Shaanxi province were studied.Meanwhile, the impact of the snow depth in Eurasia on the number of winter haze days was discussed.The main conclusions were as follows: (1)The negative (positive) anomaly center of the atmospheric circulations at 500 hPa over the Ural mountains is the background circulation of the increase (reduction) of the haze days in Shaanxi province in winter.The meteorological conditions conductive to the increase (reduction) of the haze days in Shaanxi province in winter was characterized by the opposite phase of sea level pressure between the Mediterranean and central Asia to Siberia.(2) The increase (decrease) of the snow depth in Europe could build up some meteorological conditions conductive to the decrease (increase) of the haze days in Shaanxi province in winter.(3) The correlations between the snow depth in Eurasia and the number of winter haze days in Shaanxi province showed an inverse distribution between Europe and west Siberia, the correlation coefficient between snow depth index and haze days in Shaanxi Province was greater than 0.41, the positive (negative) snow depth index could cause the negative (positive) height anomaly of the circulations over the Ural mountains, which will lead to the weakening (strengthening) of the cold air moving to East Asia and the meteorological conditions conducive to the increase (decrease) of the haze days in Shaanxi province in winter.
[1]Ding Y H, Wu P, Liu Y J, 2017.Environmental and dynamic conditions for the occurrence of persistent haze events in North China[J].Engineering, 3(2): 266-271.
[2]Hurrell J W, 1995.Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation[J].Science, 269(5224): 676-679.
[3]Kim Y, Kim K Y, Kim B M, 2013.Physical mechanisms of European winter snow cover variability and its relationship to the NAO[J].Climate Dynamics, 40(7/8): 1657-1669.
[4]Luo X, Wang B, 2019.How autumn Eurasian snow anomalies affect east asian winter monsoon: A numerical study[J].Climate Dynamics, 52: 69-82.
[5]Pei L, Yan Z W, Sun Z B, al et, 2018.Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends[J].Atmospheric Chemistry and Physics, 18(5): 3173-3183.
[6]Takaya K, Hisashi N, 1997.A formulation of a wave‐activity flux for stationary Rossby waves on a zonally varying basic flow[J].Geophysical Research Letters, 24 (23): 2985-2988.
[7]Takaya K, Hisashi N, 2001.A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J].Journal of the Atmospheric Sciences, 58 (6): 608-627.
[8]Wallace J M, Gutzler D S, 1981.Teleconnections in the geopotential height field during the northern hemisphere winter[J].Monthly Weather Review, 109(4): 784-812.
[9]Wu R G, Kirtman B P, 2007.Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow[J].Journal of Climate, 20(7): 1285-304.
[10]Xiao D, Li Y, Fan S J, al et, 2015.Plausible influence of Atlantic Ocean SST anomalies on winter haze in China[J].Theoretical and Applied Climatology, 122(1/2): 249-257.
[11]Yin Z C, Wang H J, 2018.The strengthening relationship between Eurasian snow cover and December haze days in central north China after the Mid-1990s[J].Atmospheric Chemistry and Physics, 18: 4753-4763.
[12]Yin Z C, Wang H J, Chen H P, 2017.Understanding severe winter haze events in the North China Plain in 2014: Roles of climate anomalies[J].Atmospheric Chemistry and Physics, 17(3): 1641-1651.
[13]Zhao S Y, Feng T, Tie X X, al et, 2018.Impact of climate change on Siberian High and wintertime air pollution in China in past two decades[J].Earth’s Future, D6: 118-133.
[14]Zou Y F, Wang Y H, Zhang Y Z, al et, 2017.Arctic sea ice, Eurasia snow, and extreme winter haze in China[J].Science Advances, 3(3): e1602751.
[15]布和朝鲁, 彭京备, 谢作威, 等, 2018.冬季大范围持续性极端低温事件与欧亚大陆大型斜脊斜槽系统研究进展[J].大气科学, 42(3): 656-676.
[16]蔡子颖, 韩素芹, 邱晓滨, 等, 2019.基于WRF/Chem模式天津地区重污染天气成因分析[J].高原气象, 38(5): 1108-1119.DOI: 10.7522/j.issn.1000-0534.2018.00123.
[17]柴晶品, 刁一娜, 2011.北大西洋涛动指数变化与北半球冬季阻塞活动[J].大气科学, 35(2): 326-338.
[18]陈海山, 孙照渤, 2003.欧亚积雪异常分布对冬季大气环流的影响I.观测研究[J].大气科学, 27(3): 304-316.
[19]陈海山, 许 蓓, 2012.欧亚大陆冬季雪深的时空演变特征及其影响因子分析[J].地理科学, 32(2): 129-135.
[20]黄鑫, 布和朝鲁, 林大伟, 等, 2017.春季蒙古气旋活动与冬季北大西洋海温异常和欧亚大陆积雪异常的联系[J].高原气象, 36(3): 750-762.DOI: 10.7522/j.issn.1000-0534.2016.00050.
[21]黄鑫, 李亚丽, 王靖中, 等, 2019.1980~2016年陕西省冬季霾日数时空变化及霾日数增多成因初探[J].中国环境科学, 39(9): 3671-3681.
[22]李崇银, 2000.气候动力学引论[M].北京: 气象出版社, 42-43.
[23]罗玉, 马振峰, 赵鹏国, 等, 2019.近36a来四川盆地持续霾事件特征及环流分析[J].中国环境科学, 39(9): 3604-3615.
[24]孟亚楠, 孙建华, 卫捷,等, 2018.1981-2015年华北地区持续霾事件的特征及环流分类研究[J].气候与环境研究, 24(3): 341-358.
[25]盛裴轩, 毛节泰, 李建国, 等, 2002.大气物理学[M].北京: 北京大学出版社, 27-28.
[26]石春娥, 张 浩, 杨元建, 等, 2018.安徽省持续性区域霾污染的时空分布特征[J].中国环境科学, 38(4): 1231-1242.
[27]王倩倩, 余晔, 董龙翔, 等, 2020.基于激光测风雷达的兰州冬季风场特征及其与大气污染的关系[J].高原气象, 39(3): 641-650.DOI: 10.7522/j.issn.1000-0534.2019.00009.
[28]王自发, 李杰, 王哲, 等, 2014.2013年1月我国中东部强霾污染的数值模拟和防控对策[J].中国科学(地球科学), 44(1): 3-14.
[29]吴兑, 陈慧忠, 吴蒙, 等, 2014.三种霾日统计方法的比较分析——以环首都圈京津冀晋为例[J].中国环境科学, 34(3): 545-554.
[30]吴萍, 丁一汇, 柳艳菊, 等, 2016.中国中东部冬季霾日的形成与东亚冬季风和大气湿度的关系[J].气象学报, 74(3): 352-366.
[31]武炳义, 苏京志, 张人禾, 2011.秋-冬季节北极海冰对冬季西伯利亚高压的影响[J].科学通报, 56(27): 2335-2343.
[32]肖贻青, 2017, 乌拉尔山阻塞与北大西洋涛动的关系及其对中国冬季天气的影响[J].高原气象, 36(6): 1499-1511.DOI: 10. 7522/j.issn.1000-0534.2016.00109.
[33]许立言, 武炳义, 2012.欧亚大陆积雪与2010年中国春末夏初降水的关系[J].高原气象, 31(3): 706-714.
[34]尹志聪, 王会军, 段明铿, 2019.近几年我国霾污染实时季节预测概要[J].大气科学学报, 42(1): 4-15.
[35]尹志聪, 王会军, 袁东敏, 2015.华北黄淮冬季霾年代际增多与东亚冬季风的减弱[J].科学通报, 60(15): 1395-1400.
[36]张静, 张志坚, 廖菲, 等, 2017.广州站能见度数据质量评估及其参数化研究[J].热带气象学报, 33(6): 985-991.
[37]张芝娟, 陈斌, 贾瑞, 等, 2019.全球不同类型气溶胶光学厚度的时空分布特征[J].高原气象, 38(3): 660-672.DOI: 10.7522/j.issn.1000-0534.2019.00002.
[38]宗海锋, 张庆云, 布和朝鲁, 等, 2008.黑潮和北大西洋海温异常在2008年1月我国南方雪灾中的可能作用的数值模拟[J].气候与环境研究, 13(4): 491-499.