论文

不同时间尺度下汾渭平原臭氧浓度变化及气象环境影响

  • 郑小华 ,
  • 李明星 ,
  • 娄盼星
展开
  • <sup>1.</sup>陕西省气象台,陕西 西安 710015;<sup>2.</sup>中国科学院大气物理研究所,北京 100029;<sup>3.</sup>陕西省气象科学研究所,陕西 西安 710015

收稿日期: 2020-05-27

  网络出版日期: 2021-08-28

基金资助

国家自然科学基金项目(41575087)

Different-scale Changes in Ozone Concentration and Meteorological Environment in Fenwei Plain

  • Xiaohua ZHENG ,
  • Mingxing LI ,
  • Panxing LOU
Expand
  • <sup>1.</sup>Shaanxi Meteorological Observatory,Xi'an 710015,Shaanxi,China;<sup>2.</sup>Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 10081,China;<sup>3.</sup>Institute of meteorological science of Shaanxi Province,Xi'an 710015,Shaanxi,China

Received date: 2020-05-27

  Online published: 2021-08-28

摘要

汾渭平原作为中国大气环境治理的第三大重点区域, 由挥发性有机物和氮氧化物等前体物排放增加导致光化学反应加剧进而引发的近地面臭氧(O3)污染已成为迫切需要面对的关键问题。本文基于汾渭平原11个重点城市2015 -2019年近地面大气O3及前体物观测数据结合同期气象监测资料, 总结归纳其时空变化特征, 利用Global Moran's I和Getis-Ord Gi*指数方法分析空间集聚效应和冷热点区域, 运用KZ(Kolmogorov-Zurbenko)滤波方法揭示了不同时间尺度的排放和气象环境对O3浓度变化的影响。结果表明: 近5年汾渭平原O3污染以轻度为主, 超标率逐年增加且夏季最高春季次之, 其中6月超标37%以上, 前体物中NO2年际差异不大CO浓度逐年减少。空间分布上, O3空间集聚特征逐年增强, 高浓度聚集区分布在临汾、 运城、 三门峡和洛阳的三角区域。从气象环境的影响看, O3浓度主要受到前体物排放及气象条件的季节分量和短期分量影响, 贡献率分别达到40%和24%。原始序列及各分量除与气压成负相关外, 与气温和日照均呈显著正相关且对不同区域影响较为一致, 而相对湿度和风速对各分量的影响具有显著的区域性差异。

本文引用格式

郑小华 , 李明星 , 娄盼星 . 不同时间尺度下汾渭平原臭氧浓度变化及气象环境影响[J]. 高原气象, 2021 , 40(4) : 954 -964 . DOI: 10.7522/j.issn.1000-0534.2020.00064

Abstract

As an energy supply and urban agglomeration area in the central and western regions, the Fenwei plain in recent years has been facing more and more serious air pollution problem.It has become the third key area for comprehensive treatment of environmental issues after the region of Beijing-Tianjin-Hebei and the Yangtze River Delta.With the improvement of the atmospheric environmental management and the adjustment of energy structure, the seasonal composition of pollutants has changed substantially.Particulate matters such as PM2.5 and PM10 have been effectively controlled.However, the emission of ozone precursors such as volatile organic compounds and nitrogen oxides leads to a significant increase in the concentration of ozone near the ground.Based on the observations of surface atmospheric O3 and precursors in 11 key cities across the Fenwei plain from 2015 to 2019, along with the meteorological monitoring data during the same period, this paper analyzed the characteristics of their temporal and spatial variations.The spatial agglomeration effect and cold-hot spot area were analyzed by using the Global Moran's I and Getis-OrdGi* methods.Using Kolmogorov Zurbenko (KZ) filtering method, the influence of emission and meteorological elements on the variations in O3 concentration was investigated on different time scales.The results showed that: From the temporal perspective, the O3 pollution overall was mild in recent five years, the rate over standard increased year by year with obvious seasonal variability; the highest rate appears in summer, followed by spring, and there was no over-standard phenomenon in O3 alone in winter.Among them, the rate of exceeding the standard reached more than 20% from May to August, and more than 37% in June.The CO in precursors decreased year by year, but in NO2 the annual difference was not significant.From the spatial perspective, the concentration of O3 increased year by year.The high concentration occurred mainly in Yuncheng, Linfen, Luoyang and Sanmenxia, while the low concentration appeared mainly in Baoji, Xi'an and Xianyang, the core cities in Guanzhong region.Furthermore, the temporal variation in O3 concentration is mainly caused by seasonal and short-term fluctuations of pollutant precursor emissions and meteorological conditions.The contribution rate of seasonal component is 40%, that of short-term component is 24%, and is only 5%~18% from the long-term component.Besides the significant negative correlation between O3 concentration and air pressure, a significant positive correlation was observed between O3 concentration and air temperature, sunshine and mixed layer height, respectively.In contrast, the lower the relative humidity, the higher O3 concentration.However, the effects of precipitation and wind speed on different components are not consistent in various regions.

参考文献

[1]Bell M L, Mcdermott A, Zeger S L, al et, 2004.Ozone and short-term mortality in 95 US urban communities, 1987-2000 [J].Journal of the American Medical Society, 292(19): 2372-2378.DOI: 10.1001/jama.292.19.2372.
[2]Fishman J, Grutzen P J, 1978.The origin of ozone in troposphere[J].Nature, 274(5674): 855-858.DOI: 10.1038/274855a0.
[3]Li J F, Lu K D, Lü W, al et, 2014.Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006-2011[J].Journal of Environmental Science, 26(1): 23-36.
[4]Lu K D, Zhang Y H, Su H, al et, 2010.Oxidant (O<sub>3</sub>+NO<sub>2</sub>) production processes and formation regimes in Beijing[J].Journal of Geophysical Research Atmospheres, 115(D7): 29-32.
[5]Porter P S, Rao S T, Hogrefe C, 2002.Linear trend analysis: A comparison of methods[J].Atmospheric Environment, 36(27): 4420-4421.
[6]Rao S T, Zurbenko I G, 1994.Detecting and tracking changes in ozone air quality[J].Air & waste: Journal of the Air & Waste Management Association, 44(9): 1089-1092.
[7]Schabenberger O, Gotway C A, 2005.Statistical methods for spatial data analysis[M].London: Chapman & Hall.
[8]Shao M, Wang B, Lu S H, al et, 2011.Effects of Beijing Olympics control measures on reducing reactive hydrocarbon species[J].Environmental Science & Technology, 45(2): 514-519.
[9]Tie X X, Geng F H, Guenther A, al et, 2013.Megacity impacts on regional ozone formation: Observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign[J].Atmospheric Chemistry & Physics, 13(11): 5655-5669.
[10]Tie X X, Geng F H, Li P, al et, 2009.Measurement and modeling of O<sub>3</sub>, variability in Shanghai, China: Application of the WRF-Chem model[J].Atmospheric Environment, 43(28): 4289-4302.
[11]Wang H X, Kiang C S, Tang X Y, al et, 2005.Surface ozone: A likely threat to crops in Yangtze delta of China[J].Atmospheric Environment, 39(21): 3843-3850.DOI: 10.1016/j.atmosenv. 2005. 02.057.
[12]Wang H X, Zhou L J, Tang X Y, 2006.Ozone concentrations in rural regions of the Yangtze Delta in China[J].Journal of Atmospheric Chemistry, 54(3): 255?265.
[13]Wang T, Xue L K, Brimblecombe P, al et, 2017.Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects[J].Science of the Total Environment, 575(10): 1582-1596.DOI: 10.1016/j.scitotenv.2016. 10. 081.
[14]Zhang Y H, Su H, Zhong L J, al et, 2008.Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign[J].Atmospheric Environment, 42(25): 6203-6218.DOI: 10.1016/j.atmosenv.2008.05.002.
[15]Zhang Y, Coper O R, Gaudel L A, al et, 2016.Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions[J].Nature Geoscience, 9(12): 875-879.DOI: 10.1038/NGEO2827
[16]Zhang Z Y, Zhang X L, Gong D Y, al et, 2015.Evolution of surface O<sub>3</sub>, and PM<sub>2.5</sub>, concentrations and their relationships with meteorological conditions over the last decade in Beijing[J].Atmospheric Environment, 108(2): 67-75.DOI: 10.1016/j.atmosenv.2015.02.071.
[17]Zurbenko I G, 1986.The Spectral Analysis of Time Series[M].North-Holland: Elsevier.
[18]白鹤鸣, 师华定, 高庆先, 等, 2015.基于气象调整的京津冀典型城市空气污染指数序列重建[J].生态与农村环境学报, 31(1): 44-49.
[19]邓雪娇, 周秀骥, 吴兑, 等, 2011.珠江三角洲大气气溶胶对地面臭氧变化的影响[J].中国科学(地球科学), 41(1): 93-102.
[20]高超, 张学磊, 修艾军, 等, 2019.中国生物源挥发性有机物(BVOCs)时空排放特征研究[J].环境科学学报, 39(12): 4140-4151.
[21]高晋徽, 朱 彬, 王东东, 等, 2012.南京北郊O<sub>3</sub>、 NO<sub>2</sub> 和SO<sub>2</sub> 浓度变化及长/近距离输送的影响[J].环境科学学报, 32(5): 1149-1159.
[22]贺冉冉, 朱兰保, 周开胜, 2017.基于时间序列模型残差的中国东部地区空气质量指数(AQI)空间自相关特征分析[J].环境科学学报, 37(7): 2459-2467.
[23]环境保护部, 2012a.环境空气质量标准[S].北京: 中国环境科学出版社.
[24]环境保护部, 2012b.环境空气质量指数(AQI)技术规定(试行) [S].北京: 中国环境科学出版社.
[25]黄俊, 廖碧婷, 吴兑, 等, 2018.广州近地面臭氧浓度特征及气象影响分析[J].环境科学学报, 38(1): 23-31.
[26]李苹, 余晔, 赵素平, 等, 2019.2015 -2017年中国近地面O<sub>3</sub>污染状况与影响因素分析[J].高原气象, 38(6): 1344-1353.DOI: 10.7522/j.issn.1000-0534.2019.00066.
[27]李书博, 吴统文, 张洁, 等, 2015.BCC-AGCM-Chem0模式对20世纪全球O<sub>3</sub>气候平均态及季节变化特征的模拟研究[J].高原气象, 34(6): 1601-1615.DOI: 10.7522/j.issn.1000-0534. 2014. 00119.
[28]李霄阳, 李思杰, 刘鹏飞, 等, 2018.2016年中国城市臭氧浓度的时空变化规律[J].环境科学学报, 38(4): 1263-1274.
[29]李雁宇, 李杰, 杨文夷, 等, 2020.2018年汾渭平原及其周边地区大气颗粒物的传输特征[J].环境科学学报, 40(3): 779-791.
[30]廖志恒, 孙家仁, 范绍佳,等, 2015.2006-2012年珠三角地区空气污染变化特征及影响因素[J].中国环境科学, 35(2): 329-336.
[31]刘姝岩, 包云轩, 金建平, 等, 2018.重霾天气气溶胶辐射效应对近地面臭氧峰值的影响[J].高原气象, 37(1): 296-304.DOI:10.7522/j.issn.1000-0534.2016.00141.
[32]刘松, 程燕, 李博伟, 等, 2017.2013 -2016年西安市臭氧时空变化特性与影响因素[J].地球环境学报, 8(6): 541-551.
[33]漏嗣佳, 朱彬, 廖宏, 2010.中国地区臭氧前体物对地面臭氧的影响[J].大气科学学报, 33(4): 451-459.
[34]陆克定, 张远航, 苏杭, 等, 2010.珠江三角洲夏季臭氧区域污染及其控制因素分析[J].中国科学(化学), 40(4): 407-420.
[35]秦人洁, 张洁琼, 王雅倩, 等, 2019.基于KZ滤波法的河北省PM2.5和O<sub>3</sub>浓度不同时间尺度分析研究[J].环境科学学报, 39(3): 821-831.
[36]沈劲, 黄晓波, 汪宇, 等, 2017.广东省臭氧污染特征及其来源解析研究[J].环境科学学报, 37(12): 4449-4457.
[37]屠厚旺, 田红瑛, 许曦然, 等, 2020.南亚高压南北位移对亚洲季风区上对流层-下平流层区域大气成分分布的影响[J].高原气象, 39(2): 333-346.DOI: 10.7522/j.issn.1000-0534.2019. 00054.
[38]王红丽, 2015.上海市大气挥发性有机物化学消耗与臭氧生成的关系[J].环境科学, 36(9): 3159-3167.
[39]王玫, 郑有飞, 柳艳菊, 等, 2019.京津冀臭氧变化特征及与气象要素的关系[J].中国环境科学, 39(7): 2689-2698
[40]吴宜航, 白鹤鸣, 师华定, 等, 2016.气象条件对呼和浩特市空气质量变化的影响评估[J].干旱区研究, 33(2): 292-298.
[41]肖娜, 张健恺, 田文寿, 等, 2020.东亚地区氮氧化物排放对北半球UTLS区域臭氧和温度的影响[J].高原气象, 39(2): 402-415.DOI: 10.7522/j.issn.1000-0534.2019.00043.
[42]徐鸣, 王斌, 吕爱华, 等, 2008.大气污染物多时间分辨率的小波分析[J].环境科学学报, 28(4): 786-790.
[43]严晓瑜, 缑晓辉, 杨婧, 等, 2020.中国典型城市臭氧变化特征及其与气象条件的关系[J].高原气象, 39(2): 416-430.DOI: 10. 7522/j.issn.1000-0534.2019.00033.
[44]张芳, 吴统文, 张洁, 等, 2016.BCC-AGCM-Chem0模式对20世纪对流层臭氧变化趋势的模拟研究[J].高原气象, 35(1): 158-171.DOI: 10.7522/j.issn.1000-0534.2014.00118.
[45]张浩月, 王雪松, 陆克定, 等, 2014.珠江三角洲秋季典型气象条件对 O<sub>3 </sub>和 PM<sub>10</sub> 污染的影响[J].北京大学学报 (自然科学版), 50(3): 565-576.
[46]朱佳, 王振会, 金天力, 等, 2010.基于小波分解和最小二乘支持向量机的大气臭氧含量时间序列预测[J].气候与环境研究, 15(3): 295-302.
文章导航

/