利用南疆塔里木盆地加密自动站数据、 常规地面观测和高空探测资料、 NCEP 1°×1°再分析资料和欧洲中心ECMWF模式预报初始场资料(空间分辨率0.125°×0.125°), 针对2019年6月24 -26日发生在昆仑山北坡罕见的暴雨过程, 分析了南亚高压、 高原低涡和切变线等高原天气系统对昆仑山北坡暴雨的影响。结果表明, 暴雨出现在100 hPa南亚高压双体型转为青藏高压单体型的大尺度环流下, 500 hPa中低纬呈“两高夹一低”经向环流, 西太平洋副热带高压(简称西太副高)不断西伸, 外围偏南风盛行, 伊朗高压东进加强, 两高之间的高原切变线和低涡维持。500 hPa偏西和偏南两条水汽输送路径中, 偏南水汽输送持续更长, 偏南气流将孟加拉湾水汽输送至青藏高原和昆仑山脉, 水汽辐合明显, 暴雨出现在中层水汽输送和辐合的叠加区, 水汽源地来源于孟加拉湾、 里海和咸海, 孟加拉湾水汽贡献更大。高空偏南暖湿气流沿低层“冷垫”爬升, 有利于动力抬升并加剧垂直方向的冷暖交绥。
Using the encrypted automatic station data, conventional ground observation and high-altitude sounding data, NCEP 1°×1° reanalysis data and ECMWF model prediction initial field data (spatial resolution 0.125°×0.125°) in the Tarim Basin of southern Xinjiang, aiming at a rare torrential rain process occurred on the northern slope of Kunlun Mountain from 24 to 26 June, 2019.The influence of plateau weather systems such as South Asia High, plateau vortex and shear line on the northern slope of Kunlun Mountain was analyzed.The results showed that the heavy rain occurred under the large-scale circulation of the 100 hPa South Asian high double-body type converted to the Qinghai-Xizang high pressure haplotype.The 500 hPa mid-low latitudes showed "two highs sandwiched one low" meridian circulation, and the West Pacific Subtropical High continued to extend westward.The southerly wind prevails in the periphery, the high pressure of Iran strengthens eastward, and the plateau shear line and low vortex between the two highs are maintained.In the two water vapor transport paths of 500 hPa westward and southward, the southerly water vapor transport lasts longer.The southerly airstream transports water vapor from the Bay of Bengal to the Qinghai-Xizang Plateau and the Kunlun Mountains.Convergence of water vapor is obvious.Heavy rain occurs in the middle-level water vapor transport and convergence In the superimposed area, the water vapor source comes from the Bay of Bengal, the Caspian Sea and the Aral Sea, and the water vapor in the Bay of Bengal contributes more.The high-altitude southerly warm and humid airflow climbs along the low-level "cold cushion", It is conducive to power uplift and aggravates the warm and cold changes in the vertical direction.
[1]张云惠, 陈春艳, 杨莲梅, 等, 2013.南疆西部一次罕见暴雨过程的成因分析[J].高原气象, 32(1): 191-200.DOI: 10.7522/j.issn.1000-0534.2012.00019.
[2]孙颖姝, 周玉淑, 王咏青, 2019.一次双高空急流背景下南疆强降水事件的动力过程和水汽源分析[J].大气科学, 43(5): 1041-1054.DOI: 10.3878/j.issn.1006-9895.1812.1816.
[3]张云惠, 杨莲梅, 肖开提·多莱特, 等, 2012.1971-2010年中亚低涡活动特征[J].应用气象学报, 23(3): 313-321.
[4]曾勇, 杨莲梅, 2017.南疆西部两次短时强降水天气中尺度特征对比分析[J].暴雨灾害, 36(5): 410-421.DOI: 10.3969/j.issn. 1004-9045.2017.05.003.
[5]黄艳, 俞小鼎, 陈天宇, 等, 2018.南疆短时强降水概念模型及环境参数分析[J].气象, 44(8): 1033-1041.DOI: 10.7519/j.issn. 1000-0526.2018.08.005.
[6]努尔比亚·吐尼牙孜, 张超, 李泽巍, 等, 2019.南疆西部2016年8月4次暴雨过程特征分析[J].干旱气象, 37(2): 301-311.DOI: 10.11755/j.issn.1006-7639(2019)-02-0301.
[7]张云惠, 李海燕, 蔺喜禄, 等, 2015.南疆西部持续性暴雨环流背景及天气尺度的动力过程分析[J].气象, 41(7): 816-824.DOI: 10.7519/j.issn.1000-0526.2015.07.003.
[8]赵克明, 黄艳, 于碧馨, 2017.2013年南疆西部暴雨天气的水汽特征[J].气象科技, 45(1): 121-129.DOI: 10.19517/j.1671-6345.2016002.
[9]李如琦, 孙鸣婧, 李桉孛, 等, 2017.南疆西部暴雨的动力热力特征分析[J].沙漠与绿洲气象, 11(2): 1-7.DOI: 10.12057/j.issn.1002-0799.2017.02.001.
[10]杨霞, 周鸿奎, 赵克明, 等, 2020.1991-2018年新疆夏季小时极端强降水特征[J].高原气象, 39(4): 762-773.DOI: 10.7522/j.issn.1000-0534.2019.00114.
[11]钱永甫, 张琼, 2002.南亚高压与我国盛夏气候异常[J].南京大学学报: 自然科学版, 38 (3): 295-307.
[12]张家宝, 苏起元, 孙沈清, 等, 1986.新疆短期天气预报指导手册[M].乌鲁木齐: 新疆人民出版社.
[13]王前, 赵勇, 陈飞, 等, 2017.南亚高压的多模态特征及其与新疆夏季降水的联系[J].高原气象, 36(5): 1209-1220.DOI: 10.7522/j.issn.1000-0534.2016.00123.
[14]青藏高原气象科学研究拉萨会战组, 1981.夏半年500hPa 青藏高原低涡切变线的研究[M].北京: 科学出版社.
[15]赵平, 陈隆勋, 2001.35 年来青藏高原大气热源气候特征及其与中国降水的关系[J].中国科学, 31(4): 327-332.
[16]徐建芬, 陶建红, 夏建平, 2000.青藏高原切变线暴雪中尺度分析及其涡源研究[J].高原气象, 19(2): 87-197.
[17]陶诗言, 罗四维, 张鸿材, 1984.1979 年5-8 月青藏高原气象科学实验及其观测系统[J].气象, 10(7): 2-5.
[18]姚秀萍, 张硕, 闫丽朱, 2019.青藏高原大气热源及其影响的研究进展[J].大气科学学报, 42(5): 641-651.DOI: 10.13878/j.cnki.dqkxxb.20181227001.
[19]刘新伟, 叶培龙, 伏晶, 等, 2020.高原切变线形态演变对高原边坡一次降水过程的影响分析[J].高原气象, 39(2): 245-253.DOI: 10.7522/j.issn.1000-0534.2019.00084.
[20]刘勇, 袁媛, 潘留杰, 等, 2016.大气层结对流稳定条件下一次区域性暴雨的成因[J].高原气象, 35(5): 1317 1326.DOI: 10.7522/j.issn.1000-0534.2015.00030.
[21]张芹, 丁治英, 杨成芳, 等, 2015.山东一次历史极端降雪过程的诊断分析[J].高原气象, 34(4): 1131-1138.DOI: 10.7522/j.issn.1000-0534.2014.00009.
[22]赵桂香, 杜莉, 范卫东, 等, 2011.山西省大雪天气的分析预报[J].高原气象, 30(3): 727-738.
[23]周晋红, 马鸿青, 孙少雄, 等, 2014.山西一次低空偏东风暴雪天气结构特征分析[J].高原气象, 33(5): 1305-1314.DOI: 10. 7522/j.issn.1000-0534.2014.00087.
[24]赵宇, 蓝欣, 杨成芳, 2018.一次江淮气旋极端雨雪过程的云系特征和成因分析[J].高原气象, 37(5): 1325-1340.DOI: 10.7522/j.issn.1000-0534.2018.00024.