论文

中巴经济走廊极端降水时空变化

  • 陈金雨 ,
  • 陶辉 ,
  • 刘金平 ,
  • 翟建青 ,
  • 苏布达 ,
  • 姜彤
展开
  • <sup>1.</sup>中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011;<sup>2.</sup>中国科学院大学,北京 100049;<sup>3.</sup>华北水利水电大学测绘与地理信息学院,河南 郑州 450046;<sup>4.</sup>中国气象局国家气候中心,北京 100081;<sup>5.</sup>南京信息工程大学气象灾害预报预警与评估协同中心/灾害风险管理研究院/地理科学学院,江苏 南京 210044

收稿日期: 2020-09-15

  网络出版日期: 2021-10-28

基金资助

科技部基础资源调查专项(2018FY100501);中国科学院西部之光项目(2019-XBQNXZ-B-004)

Temporal and Spatial Variations of Extreme Precipitation in China-Pakistan Economic Corridor

  • Jinyu CHEN ,
  • Hui TAO ,
  • Jinping LIU ,
  • Jianqing ZHAI ,
  • Buda SU ,
  • Tong JIANG
Expand
  • <sup>1.</sup>State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,Xinjiang,China;<sup>2.</sup>University of Chinese Academy of Science,Beijing 100049,China;<sup>3.</sup>College of Surveying and Geo-informatics,North China University of Water Resources and Electric Power,Zhengzhou 450046,Henan,China;<sup>4.</sup>National Climate Center,China Meteorological Administration,Beijing 100081,China;<sup>5.</sup>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Institute for Disaster Risk Management,School of Geographical Sciences,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China

Received date: 2020-09-15

  Online published: 2021-10-28

摘要

基于1961 -2015年中巴经济走廊地区逐日降水观测数据, 采用专业气候数据空间插值软件ANUSPLIN对观测数据进行格点化处理, 利用改进的百分位法计算了极端降水阈值, 分析了中巴经济走廊地区极端降水量、 强度与频率的时空分布特征, 采用广义极值分布估算了该研究区极端降水的重现期。研究表明: (1)近55年来, 极端降水量与极端降水日数均呈增加趋势但均不显著, 极端降水强度变化趋势平稳; (2)研究区极端降水量与极端降水阈值的空间分布特征相似, 极端降水频率的空间分布则较为均匀且呈“西南低—东北高”阶梯状分布; 极端降水强度最高的地区主要集中在信德省南部和35°N地区, 达到50 mm·d-1以上; (3)不同重现期的极端降水表现出较强的区域性, 随着重现期的逐渐增加, 35°N地区高重现水平的区域范围逐渐减少, 30°N地区在25年一遇中出现高重现水平区域且在50年一遇重现期中区域范围逐渐增大。

本文引用格式

陈金雨 , 陶辉 , 刘金平 , 翟建青 , 苏布达 , 姜彤 . 中巴经济走廊极端降水时空变化[J]. 高原气象, 2021 , 40(5) : 1048 -1056 . DOI: 10.7522/j.issn.1000-0534.2020.00103

Abstract

Based on the observed daily precipitation from 1961 to 2015 in the China-Pakistan Economic Corridor (CPEC), the spatial interpolation software ANUSPLIN was used to grid the observations.An improved percentile method was used to calculate the extreme precipitation threshold, while the spatial and temporal distribution characteristics of the extreme precipitation amounts, intensities and frequencies were also analyzed in the CPEC region.Furthermore, a generalized extreme distribution method was used to estimate the return period of extreme precipitation in the study area.Results revealed that: (1) trends of extreme precipitation and the number of days of extreme precipitation had non-significant increasing trend, whereas the time trend of extreme precipitation intensity was stable.(2) The spatial distribution of extreme precipitation and extreme precipitation threshold in the study area manifested similar characteristics, while the spatial distribution of extreme precipitation frequencies was more uniform and showed a "southwest low-northeast high" step-like distribution; however areas with the highest extreme precipitation intensities were mainly concentrated in the south of Sindh province and 35°N, reaching over 50 mm·d-1.(3) The spatial distribution of different return periods indicated that extreme precipitation exhibited a strong regional pattern, with the range of high return levels in the 35°N region gradually decreasing as the return period increases, and the region of high return levels can be detected in the 30°N region with the encounter of 25 a, and continues to increase in the range of the region with the return period of 50 a.

参考文献

[1]Abbas F, Ahmad A, Safeeq M, al et, 2014.Changes in precipitation extremes over arid to semiarid and subhumid Punjab, Pakistan[J].Theoretical and Applied Climatology, 116(3/4): 671-680.DOI: 10.1007/s00704-013-0988-8.
[2]Abid M, Schneider U A, Scheffran J, 2016.Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan[J].Journal of Rural Studies, 47: 254-266.DOI: 10.1016/j.jrurstud.2016.08.005.
[3]Ahmed K F, Wang G, Silander J, al et, 2013.Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S.northeast[J].Global and Planetary Change, 100: 320-332.DOI: 10.1016/j.gloplacha.2012.11.003.
[4]Allen M R, Ingram W J, 2002.Constraints on future changes in climate and the hydrologic cycle[J].Nature, 419(6903): 224-232.DOI: 10.1038/nature01092.
[5]Ashiq M W, Zhao C, Ni J, al et, 2010.GIS-based high-resolution spatial interpolation of precipitation in mountain-plain areas of Upper Pakistan for regional climate change impact studies[J].Theoretical and Applied Climatology, 99(3/4): 239-53.DOI: 10.1007/s00704-009-0140-y.
[6]Atta UR R, Khan A N, 2013.Analysis of 2010-flood causes, nature and magnitude in the Khyber Pakhtunkhwa, Pakistan[J].Natural Hazards, 66(2): 887-904.DOI: 10.1007/s11069-012-0528-3.
[7]Bhatti A S, Wang G J, Ullah W, al et, 2020.Trend in extreme precipitation indices based on long term in situ precipitation records over Pakistan[J].Water, 12(3): 797.DOI: 10.3390/w12030797.
[8]Coles S, 2016.An introduction to statistical modeling of extreme values[M].New York: Springer Verlag, 36-78.
[9]Donat M G, Lowry A L, Alexander L V, al et, 2016.More extreme precipitation in the world's dry and wet regions[J].Nature Climate Change, 6(5): 508-513.DOI: 10.1038/nclimate2941.
[10]Eckstein D, Künzel V, Sch?fer L, al et, 2019.Global climate risk index2020.Who suffers most from extreme weather events? Weather-related loss events in 2018 and 1999 to 2018[M].Berlin: Germanwatch, Germany.
[11]Fan X H, Wang M B, 2010.Change trends of air temperature and precipitation over Shanxi Province, China[J].Theoretical and Applied Climatology, 103(3/4): 519-531.DOI: 10.1007/s00704-010-0319-2.
[12]Fischer E M, Knutti R, 2016.Observed heavy precipitation increase confirms theory and early models[J].Nature Climate Change, 6(11): 986-991.DOI: 10.1038/nclimate3110.
[13]Fisher R A, Tippett L H C, 1928 Limiting forms of the frequency distribution of the largest or smallest member of a sample[J].Proceedings of the Cambridge Philosophical Society, 24(2): 180-190.
[14]Li F Y, Collins W D, Wehner M F, al et, 2011.Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of Community Atmospheric Model (CAM3)[J].Tellus, 63A(5): 884-892.DOI: 10.1111/j.1600-0870.2011.00544.x.
[15]Hijmans R J, Cameron S E, Parra J L, al et, 2005.Very high-resolution interpolated climate surfaces for global land areas[J].International Journal of Climatology, 25(15): 1965-1978.DOI: 10. 1002/joc.1276.
[16]Hussain M S, Lee S, 2013.The regional and the seasonal variability of extreme precipitation trends in Pakistan[J].Asia-Pacific Journal of Atmospheric Sciences, 49(4): 421-441.DOI: 10.1007/s13143-013-0039-5.
[17]IPCC, 2013.Intergovernmental Panel on Climate Change Climate Change Fifth Assessment Report (AR5)[M].Cambridge: London Cambridge University Press, UK.
[18]Iqbal M F, Athar H, 2018.Validation of satellite-based precipitation over diverse topography of Pakistan[J].Atmospheric Research, 201: 247-260.DOI: 10.1016/j.atmosres.2017.10.026.
[19]Jenkinson A F, 1955.The frequency distribution of the annual maximum (or minimum) values of meteorological elements[J].Quarterly Journal of the Royal Meteorological Society, 81(348): 158-171.DOI: 10.1002/qj.49708134804.
[20]Nandintsetseg B, Greene J S, Goulden C E, 2007.Trends in extreme daily precipitation and temperature near Lake Hvsgl, Mongolia[J].International Journal of Climatology, 27(3): 341-347.DOI: 10.1002/joc.1404.
[21]Price D T, Mckenney D W, Nalder I A, al et, 2000.A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data[J].Agricultural and Forest Meteorology, 101(2/3): 81-94.DOI: 10.1016/S0168-1923(99)00169-0.
[22]Qureshi A H, 2015.China/Pakistan economic corridor: A critical national and international law policy-based perspective[J].Chinese Journal of International Law, 14(4): 777-799.DOI: 10.1093/chinesejil/jmv045.
[23]Sillmann J, Kharin V V, Zwiers F W, al et, 2013.Climate extremes indices in the CMIP5 multimodel ensemble: Part 2.Future climate projections[J].Journal of Geophysical Research Atmospheres, 118(6): 2473-2493.DOI: 10.1002/jgrd.50188.
[24]Trenberth K E, 2011.Changes in precipitation with climate change[J].Climate Research, 47(1/2): 123-138.DOI: 10.3354/cr00953.
[25]Ullah S, You Q L, Ullah W, al et, 2018.Observed changes in precipitation in China-Pakistan economic corridor during 1980-2016[J].Atmospheric Research, 210: 1-14.DOI: 10.1016/j.atmosres. 2018.04.007.
[26]Wu P L, Christidis N, Stott P, 2013.Anthropogenic impact on Earth's hydrological cycle[J].Nature Climate Change, 3(9): 807-810.DOI: 10.1038/nclimate1932.
[27]Zhang Y N, Liang C, 2020.Analysis of annual and seasonal precipitation variation in the Qinba Mountain area, China[J].Scientific Reports, 10(1): 961.DOI: 10.1038/s41598-020-57743-y.
[28]Zhou B T, Wen Q H, Xu Y, al et, 2014.Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles[J].Journal of Climate, 27(17): 6591-6611.DOI: 10.1175/JCLI-D-13-00761.1.
[29]Zolina O, Kapala A, Simmer C, al et, 2004.Analysis of extreme precipitation over Europe from different reanalyses: A comparative assessment[J].Global & Planetary Change, 44(1/4): 0-161.DOI: 10.1016/j.gloplacha.2004.06.009.
[30]程诗悦, 秦伟, 郭乾坤, 等, 2019.近50年我国极端降水时空变化特征综述[J].中国水土保持科学, 17(3): 155-161.
[31]迟潇潇, 尹占娥, 王轩, 等, 2015.我国极端降水阈值确定方法的对比研究[J].灾害学, 30(3): 186-190.DOI: 10.3969/j.issn. 1000-811X.2015.03.034.
[32]丁思洋, 朱文泉, 江源, 等, 2017.基于RS与GIS的中巴经济走廊生态现状评价[J].北京师范大学学报(自然科学版), 53(3): 358-365.DOI: 10.16360/j.cnki.jbnuns.2017.03.018.
[33]丁裕国, 江志红, 2009.极端气候研究方法导论[M].北京: 气象出版社.
[34]杜鸿, 夏军, 曾思栋, 等, 2012.淮河流域极端径流的时空变化规律及统计模拟[J].地理学报, 67(3): 398-409.
[35]刘宗义, 2016.中巴经济走廊建设: 进展与挑战[J].国际问题研究, 48(3): 122-136, 138.
[36]卢珊, 胡泽勇, 王百朋, 等, 2020.近56年中国极端降水事件的时空变化格局[J].高原气象, 39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058.
[37]罗梦森, 熊世为, 梁宇飞, 2013.区域极端降水事件阈值计算方法比较分析[J].气象科学, 33(5): 549-554.
[38]苗爱梅, 王洪霞, 武捷, 2020.山西不同历时强降水的统计特征及趋势变化[J].高原气象, 39(4): 796-807.DOI: 10.7522/j.issn.1000-0534.2019.00069.
[39]荣艳淑, 王文, 王鹏, 等, 2012.淮河流域极端降水特征及不同重现期降水量估计[J].河海大学学报(自然科学版), 40(1): 1-8.DOI: 10.3876/j.issn.1000-1980.2012.01.001.
[40]史培军, 孔锋, 方佳毅, 2014.中国年代际暴雨时空变化格局[J].地理科学, 34(11): 1281-1290.DOI: 10.13249/j.cnki.sgs. 2014.11.001.
[41]宋晓猛, 张建云, 孔凡哲, 2017.基于极值理论的北京市极端降水概率分布研究[J].中国科学(技术科学), 48(6): 639-650.
[42]苏布达, 姜彤, 任国玉, 等, 2006.长江流域1960-2004年极端强降水时空变化趋势[J].气候变化研究进展, 3(1): 9-14.
[43]谢瑶瑶, 李丽平, 王盘兴, 等, 2011.中国气温和降水序列年代际分量的显著性检验[J].大气科学学报, 34(4): 467-475.DOI: 10.13878/j.cnki.dqkxxb.2011.04.013.
[44]杨霞, 周鸿奎, 赵克明, 等, 2020.1991-2018年新疆夏季小时极端强降水特征[J].高原气象, 39(4): 762-733.DOI: 10.7522/j.issn.1000-0534.2019.00114.
[45]张强, 李剑锋, 陈晓宏, 等, 2011.基于Copula函数的新疆极端降水概率时空变化特征[J].地理学报, 66(1): 3-12.
文章导航

/