论文

甘肃河东地区不同环流形势下短时强降水的雷达回波特征分析

  • 孔祥伟 ,
  • 杨建才 ,
  • 李红 ,
  • 杨毅
展开
  • <sup>1.</sup>兰州大学大气科学学院/兰州天气气候联合研究与实训中心,甘肃 兰州 730000;<sup>2.</sup>兰州中心气象台,甘肃 兰州 730020;<sup>3.</sup>中国气象局兰州干旱气象研究所,甘肃 兰州 730020

收稿日期: 2020-04-29

  网络出版日期: 2021-10-28

基金资助

甘肃省气象局气象科研项目(Zd2021-01);甘肃省气象局创新团队项目(GSQXCXTD-2020-01)

Analysis of Radar Echo Characteristics of Short-term Heavy Precipitation Weather with Different Circulation Pattern in East Gansu Province

  • Xiangwei KONG ,
  • Jiancai YANG ,
  • Hong LI ,
  • Yi YANG
Expand
  • <sup>1.</sup>College of Atmospheric Sciences,Lanzhou University/Joint Center of Research and Training for Weather and Climate Prediction,Lanzhou 730000,Gansu,China;<sup>2.</sup>Lanzhou Central Meteorological observatory,Lanzhou 730020,Gansu,China;<sup>3.</sup>Institute of Arid Meteorology,China Meteorology Administration,Lanzhou 730020,Gansu,China

Received date: 2020-04-29

  Online published: 2021-10-28

摘要

为了尝试建立天气尺度环流分型与中小尺度雷达特征的衔接, 本文基于2010 -2015年15次区域性短时强降水天气过程, 提炼总结了甘肃河东地区高原槽东移型、 副高边缘型、 西北气流型3种主要的短时强降水环流形势配置, 并分析了不同环流形势下中小尺度系统雷达回波结构、 演变的共性特征。结果表明: (1)高原槽东移型的雷达回波常为NNE~SSW走向的中β尺度层积混合带状回波, 与700 hPa冷式切变线右侧的低空急流轴走向和位置较为一致。带状回波多在陇东南地区形成, 偏南风低空急流对其传播方向产生重要影响, 使其在陇东南维持3~4 h, 多则5~6 h, 常伴有“列车效应”。回波质心低, 暖云降水为主, 降水效率高。(2)副高边缘型的雷达回波常为NE~SW走向的中β尺度窄带状回波, 位于略比700 hPa冷式切变线超前的地面锋线附近。往往在冷空气侵入到甘肃中部地区时生成, 随着冷锋快速的由西北向东南方向移动, 移至陇东南附近时, 逐渐演变为具有高原槽东移型的雷达回波特征, 但其向东南方向的移动速度相比高原槽东移型快。(3)西北气流型的雷达回波较为分散, 局地性很强, 主要是中γ尺度块状回波, 主要有短生命周期的单体生消和多个单体组织、 合并、 加强两种形式, 对流单体的发展较前两类更旺盛, 属于深对流型。

本文引用格式

孔祥伟 , 杨建才 , 李红 , 杨毅 . 甘肃河东地区不同环流形势下短时强降水的雷达回波特征分析[J]. 高原气象, 2021 , 40(5) : 1057 -1070 . DOI: 10.7522/j.issn.1000-0534.2020.00084

Abstract

In order to try to establish the connection between large-scale synoptic situation configuration patterns and the medium and small scale radar characteristics, 15 regional short-term heavy precipitation weather processes from 2010 to 2015 in East Gansu Province are used.These short-term heavy precipitation synoptic situation configuration patterns are divided into three patterns: eastward moving plateau low trough pattern, edge of subtropical high pattern, and northwest airflow pattern according to the difference of the main influence system in the 500 hPa.The common characteristics of weather radar echo structure and its’ evolution under different patterns are also analyzed.The results show that: (1) The radar echo of the eastward moving plateau low trough pattern is usually a mid-β-scale stratified mixed band echo of NNE-SSW trend, which is consistent with the trend and position of the low-level jet axis on the right side of 700 hPa cold shear line.The band echo is mostly formed in southeast Gansu, and the southerly low-level jet has an important influence on its propagation direction, which makes it maintain for 3~4 hours, even 5~6 hours, often accompanied by "train effect".The radar echo center of mass is low, warm cloud precipitation is dominant, and with high precipitation efficiency.(2) The radar echo edge of subtropical high pattern is usually a mid-β-scale narrow band echo of NE-SW direction located near the ground front, which is slightly ahead of 700 hPa cold shear line.This kind of radar echo is usually generated when the rapid moved cold air (cold front) intrudes into the central area of Gansu Province.When the cold front moves to the southeast of Gansu Province, the radar echo gradually evolves into the characteristics that of eastward moving plateau low trough pattern.However, its speed of moving southeast is faster than eastward moving plateau low trough pattern.(3) The radar echo of northwest airflow pattern is relatively scattered and localized, it is mainly a mid-γ-scale block echo.Either short life cycle convective cell generates and eliminates, or multi-cell storm organizes, combinates and reinforces.The development of convective cell is more vigorous than the former two patterns, belongs to deep convection.

参考文献

[1]Doswell C A, 1987.The distinction between large-scale and meso-scale contribution to severe convection: A case study example [J].Weather and Forecasting, 2(1): 3-16.
[2]Doswell C A, Brooks H E, Maddox R A, 1996.Flash flood forecasting: An ingredients-based methodology [J].Weather and Forecasting, 11(4): 560-581.
[3]白晓平, 王式功, 赵璐, 等, 2016.西北地区东部短时强降水概念模型[J].高原气象, 35(5): 1248-1256.DOI: 10.7522/j.issn. 1000-0534.2015.00102.
[4]端木礼寅, 李照荣, 张强, 等, 2004.甘肃中部强对流天气多普勒雷达和闪电特征个例研究[J].高原气象, 23(6): 764-772.
[5]樊李苗, 俞小鼎, 2013.中国短时强对流天气的若干环境参数特征分析[J].高原气象, 32(1): 156-165.DOI: 10.7522/ j.issn. 1000-0534.2012.00016.
[6]付双喜, 王致君, 张杰, 等, 2006.甘肃中部一次强对流天气的多普勒雷达特征分析[J].高原气象, 25(5): 932-941.
[7]傅朝, 杨晓军, 周晓军, 等, 2015.2013年6月19 -20日甘肃陇东南暖区暴雨多普勒雷达特征分析[J].气象, 41(9): 1095-1103.
[8]何立富, 周庆亮, 谌芸, 等, 2011.国家级强对流潜势预报业务进展与检验评估[J].气象, 37(7): 777-784.
[9]黄小玉, 陈媛, 顾松山, 等, 2006.湖南地区暴雨的分类及回波特征分析[J].南京气象学院学报, 29(5): 635-643.
[10]黄玉霞, 王宝鉴, 王勇, 等, 2017.甘肃省强对流天气中尺度分析业务技术规范[M].北京: 气象出版社, 20-31.
[11]蓝渝, 张涛, 郑永光, 等, 2013.国家级中尺度天气分析业务技术进展Ⅱ: 对流天气中尺度过程分析规范和支撑技术[J].气象, 39(7): 901-910.
[12]雷蕾, 邢楠, 周璇, 等, 2020.2018年北京“7·16”暖区特大暴雨特征及形成机制研究[J].气象学报, 78(1): 1-17.
[13]李栋梁, 邵鹏程, 王慧, 等, 2013.中国东亚副热带夏季风北边缘带研究进展[J].高原气象, 32(1): 305-314.DOI: 10.7522/j.issn.1000-0534.2012.00030.
[14]李向红, 唐伍斌, 李垂军, 等, 2009.广西强对流天气的天气形势分析与雷达临近预警[J].灾害学, 24(2): 46-50.
[15]李彦霖, 张述文, 田程, 等, 2018.基于雷达回波的贵阳地区对流性降水特征分析[J].气象, 44(6): 752-758.
[16]刘新伟, 叶培龙, 伏晶, 等, 2020.高原切变线形态演变对高原边坡一次降水过程的影响分析[J].高原气象, 39(2): 245-253.DOI: 10.7522/j.issn.1000-0534.2019.00084.
[17]曲晓波, 张涛, 刘鑫华, 等, 2010.舟曲“8.8”特大山洪泥石流灾害气象成因分析[J].气象, 36(10): 102-105.
[18]孙继松, 雷蕾, 于波, 等, 2015.近10年北京地区极端暴雨事件的基本特征[J].气象学报, 73(4): 609-623.
[19]陶诗言, 1980.中国之暴雨[M].北京: 科学出版社, 225-226.
[20]王宝鉴, 孔祥伟, 傅朝, 等, 2016.甘肃陇东南一次大暴雨的中尺度特征分析[J].高原气象, 35(6): 1551-1564.DOI: 10.7522/j.issn.1000-0534.2015.00114.
[21]王雅琦, 冯娟, 李建平, 等, 2020.西北地区东部夏季降水年际变化特征及其与环流的关系[J].高原气象, 39(2): 290-300.DOI: 10.7522/j.issn.1000-0534.2019.00023.
[22]王秀明, 俞小鼎, 周小刚, 2014.雷暴潜势预报中的几个基本问题的讨论[J].气象, 40(4): 389-399.
[23]王奕丹, 胡泽勇, 孙根厚, 等, 2019.高原季风特征及其与东亚夏季风关系的研究[J].高原气象, 38(3): 518-527.DOI: 10.7522/j.issn.1000-0534.2019.00025.
[24]许爱华, 孙继松, 许东蓓, 等, 2014.中国中东部强对流天气的天气形势分类和基本要素配置特征[J].气象, 40(4): 400-411.
[25]许东蓓, 许爱华, 肖玮, 等, 2015.中国西北四省区强对流天气形势配置及特殊性综合分析[J].高原气象, 34(4): 973-981.DOI: 10.7522/j.issn.1000-0534.2014.00102.
[26]杨波, 孙继松, 毛旭, 等, 2016.北京地区短时强降水过程的多尺度环流特征[J].气象学报, 74(6): 919-934.
[27]杨小银, 宋广宁, 付培健, 2013.“5.10”岷县暴雨灾害天气过程的数值模拟和诊断分析[J].高原气象, 32(3): 798-805.DOI: 10. 7522/j.issn.1000-0534.2013.00031.
[28]俞小鼎, 2013.短时强降水临近预报的思路与方法[J].暴雨灾害, 32(3): 202-209.
[29]俞小鼎, 周小刚, 王秀明, 2012.雷暴与强对流临近天气预报技术进展[J].气象学报, 70(3): 311-337.
[30]张涛, 蓝渝, 毛冬艳, 等, 2013.国家级中尺度天气分析业务技术进展Ⅰ: 对流天气环流场分析业务技术规范的改进与产品集成系统支撑技术[J].气象, 39(7): 894-900.
[31]张小玲, 谌芸, 张涛, 2012.对流天气预报中的环境场条件分析[J].气象学报, 70(4): 642-654.
[32]张小玲, 张涛, 刘鑫华, 等, 2010.中尺度天气的高空地面图综合分析[J].气象, 36(7): 143-150.
[33]张之贤, 张强, 赵庆云, 等, 2013.“8·8”舟曲特大山洪泥石流灾害天气特征分析[J].高原气象, 32(1): 290-297.DOI: 10.7522/j.issn.1000-0534.2012.00028.
[34]张之贤, 张强, 赵庆云, 等, 2014.陇东南地区短时强降水的雷达回波特征及其降水反演[J].高原气象, 33(2): 530-538.DOI: 10.7522/j.issn.1000-0534.2013.00001.
[35]赵庆云, 傅朝, 刘新伟, 等, 2017.西北东部暖区大暴雨中尺度系统演变特征[J].高原气象, 36(3): 697-704.DOI: 10.7522/j.issn.1000-0534.2016.00140.
[36]郑永光, 林隐静, 朱文剑, 等, 2013.强对流天气综合监测业务系统建设[J].气象, 39(2): 234-240.
[37]郑媛媛, 姚晨, 郝莹, 等, 2011.不同类型大尺度环流背景下强对流天气的短时临近预报预警研究[J].气象, 37(7): 795-801.
文章导航

/