论文

短时强降水和冰雹云降水个例雨滴谱特征分析

  • 王俊 ,
  • 王文青 ,
  • 王洪 ,
  • 张秋晨 ,
  • 龚佃利
展开
  • <sup>1.</sup>山东省气象防灾减灾重点实验室,山东 济南 250031;<sup>2.</sup>山东省人民政府人工影响天气办公室,山东 济南 250031

收稿日期: 2020-06-12

  网络出版日期: 2021-10-28

基金资助

国家重点研发计划项目(2018YFC1507903);国家自然科学基金项目(41275044);山东省气象局课题(2012sdqx12)

Characteristics of the Raindrop Size Distribution during a Short-time Heavy Rainfall and a Squall Line Accompanied by Hail

  • Jun WANG ,
  • Wenqing WANG ,
  • Hong WANG ,
  • Qiuchen ZHANG ,
  • Dianli GONG
Expand
  • <sup>1.</sup>Key Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong,Jinan 250031,Shandong,China;<sup>2.</sup>Shandong Weather Modification Office,Jinan 250031,Shandong,China

Received date: 2020-06-12

  Online published: 2021-10-28

摘要

为了更好地理解暖云和冷云过程影响下雨滴谱和降水积分参数分布特征的差异, 利用Parsivel激光雨滴谱仪和CINRADA/SA多普勒雷达观测资料, 分析了两次强对流性降水(一次短时强降水和一次伴随降雹的飑线对流带降水)雨滴谱特征, 研究表明: (1)短时强降水的对流降水雨滴谱谱型包括单峰谱(峰值直径0.2~0.3 mm)、 双峰谱(峰值直径0.9 mm和2.0 mm)和多峰谱(粒子直径1.0 mm和2.0 mm同时出现第二、 三峰), 显示暖云中雨滴碰并、 碰撞-破碎机制对雨滴谱形成有重要影响。归一化Gamma函数的截距参数和平均质量加权直径(lgNw-Dm)分布显示短时强降水的雨滴谱具有大陆性对流降水特征; Z-R关系与新一代多普勒雷达的Z-R关系接近。(2)伴随冰雹的飑线对流降水雨滴谱主要是单峰谱(峰值直径0.2~0.7 mm), 缺少较大直径的第二峰, 有较多的小和较大直径粒子, 大于峰值直径的粒子分布曲线是向上凹的。lgNw-Dm分布显示比大陆性对流降水的雨滴谱有更大DmZ-R关系具有较大的指数和系数, 明显偏离新一代多普勒雷达的Z-R关系。表明冷、 暖云过程的差异导致地面雨滴谱和积分参数之间有明显不同。(3)尺度律方法分析发现, 短时强降水主要雨滴谱的广义函数gx)可以是指数函数、 也可以是形状因子小于1.0的Gamma函数, 而伴随冰雹的强降水雨滴谱广义函数更适合形状因子小于0的Gamma函数。

本文引用格式

王俊 , 王文青 , 王洪 , 张秋晨 , 龚佃利 . 短时强降水和冰雹云降水个例雨滴谱特征分析[J]. 高原气象, 2021 , 40(5) : 1071 -1086 . DOI: 10.7522/j.issn.1000-0534.2020.00091

Abstract

To better understand the differences of rain drop size distribution (DSD) and its integral parameters, such as intercept parameter, volume weight diameter, rain intensity and radar reflectivity factor, between warm rainfall and cold rainfall processes, the characteristics of rain DSD during a heavy rainfall and a squall line accompanied by hail (rain intensity higher than 10 mm·h-1) are analyzed based on data observed by Parsivel disdrometers and CINRADA/SA Doppler radars.The results are shown as follows.(1) The DSD of the convective type in heavy rainfall includes single-peak spectrum (peak diameter between 0.2 and 0.3 mm), double peak spectrum (peak diameter being 0.9 or 2.0 mm) and multi-peak spectrum (the second and third peaks appear simultaneously when particle diameter is 1.0 mm and 2.0 mm), indicating that the coalescence and collision-breakup of raindrops in warm rainfall are dominant processes.The intercept parameter and the mean mass-weighted diameter (lgNw-Dm) of the normalized Gamma function show the continental convective characteristics of rain DSD during the heavy rainfall.The Z-R relationship is close to that of the new generation Doppler radar.Although the heavy rain is fully developed in the high-altitude cold rainfall processes, the collision-coalescence and breakup in the warm rainfall have enough time to operate owing to the high position of 0 ℃, and the equilibrium DSD appears.(2) The DSD of the convective precipitation accompanied by hail is mainly single-peak spectrum (peak diameter between 0.2 and 0.7mm), lacks the second peak with larger diameter, has more small and large diameter particles, and the curve of DSD larger than the peak diameter is a concave upward.The distribution of lgNw-Dm shows a larger Dm compared with the DSD of continental convective precipitation, while the Z-R relationship has a larger index and coefficient, deviating from that of the new generation Doppler radar.The differences between cold rainfall and warm rainfall processes lead to the obvious differences between ground DSD and integral parameters.In the precipitation process accompanied by hail, ice particles such as graupel and hail constantly melt and breakup in the falling process, leading to the large number of small and large raindrop on the ground.Therefore, the differences in microphysical processes bring about different characteristics of DSD.(3) When different order moments are used to calculate the exponential bn, it is necessary to make a reasonable choice according to the characteristics of DSD.The difference of number density between large, medium and small particles will lead to the great difference of the variation of different order moments with rain intensity.The analysis of a scaling law formalism shows that the general distribution function gx) for the DSD of the heavy rainfall can be exponential function or Gamma function with shape factor less than 1.0, while the general distribution function gx) for the DSD of the convective precipitation accompanied by hail is more suitable for Gamma function with shape factor less than 0.

参考文献

[1]Bennet J A, Fang D J, Boston R C, 1984.The relationship between N0 and Λfor Marshall-Palmer type raindrop-size distributions[J].Journal of Applied Meteorology and Climatology, 23(5); 768-771.DOI: org/10.1175/1520-0450(1984)023<0768: TRBAFM>2.0.CO; 2.
[2]Bringi V N, Chandrasekar V, Hubbert J, al et, 2003.Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis[J].Journal of the Atmospheric Sciences, 60(2): 354-365.DOI: org/10.1175/1520-0469(2003)060<0354: RSDIDC>2.0.CO; 2.
[3]Bringi V N, Williams C R, Thurai M, al et, 2009.Using dual-polarized radar and dual-frequency profiler for DSD characterization: a case study from Darwin, Australia[J].Journal of Atmospheric and Oceanic Technology, 26(10): 2107-2122.DOI: org/10.1175/2009JTECHA1258.1.
[4]D'Adderio LP, Porcù F, Tokay A, 2015.Identification and analysis of collisional break-up in natural rain[J].Journal of the Atmospheric Sciences, 72(9): 3404-3416.DOI: org/10.1175/JAS-D-14-0304.1.
[5]D'Adderio LP, Porcù F, Tokay A, 2018.Evolution of drop size distribution in natural rain[J].Atmospheric Research, 200(200): 70-76.DOI: org/10.1016/j.atmosres.2017.10.003.
[6]Dolan B, Fuchs B, Rutledge S A, al et, 2018.Primary Modes of Global Drop Size Distributions[J].Journal of the Atmospheric Sciences, 75(5): 1453-1476.DOI: org/10.1175/JAS-D-17-0242.1.
[7]Friedrich K, Kalina E A, Masters F J, al et, 2013a.Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2[J].Monthly Weather Review, 141(4): 1182-1203.DOI: org/10.1175/MWR-D-12-00116.1.
[8]Friedrich K, Stephanie H, Masters F J, al et, 2013b.Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall[J].Journal of Atmospheric and Oceanic Technology, 30(9): 2063-2080.DOI: org/10. 1175/JTECH-D-12-00254.1.
[9]Fulton R A, Breidenbach J P, Seo D J, al et, 1998.The WSR-88D rainfall algorithm[J].Weather and Forecasting, 13(2): 377-395.DOI: org/10.1175/1520-0434(1998)013<0377: TWRA>2.0.CO; 2.
[10]Gatlin P N, Thurai M, Bringi V N, al et, 2015.Searching for large raindrops: A global summary of Two-Dimensional Video Disdrometer observations[J].Journal of Applied Meteorology and Climatology, 54(5): 1069-1089.DOI: org/10.1175/JAMC-D-14-0089.1.
[11]Hu Z, Srivastava R C, 1995.Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observation[J].Journal of the Atmospheric Sciences, 52(10): 1761-1783.DOI: org/10.1175/1520-0469(1995)052<1761: EORSDB>2.0.CO; 2.
[12]Jaffrain J, Berne A, 2011.Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers[J].Journal of Hydrometeorology, 12(3): 352-370.DOI: org/10.1175/2010JHM1244.1.
[13]Joss J, Gori E G, 1978.Shapes of raindrop size distributions[J].Journal of Applied Meteorology and Climatology, 17(7): 1054-1061.DOI: org/10.1175/1520-0450(1978)017<1054: SORSD>2.0.CO; 2
[14]L?ffler-Mang M, Joss J, 2000.An optical disdrometer for measuring size and velocity of hydrometeors[J].Journal of Atmospheric and Oceanic Technology, 17(2): 130-139.DOI: org/10.1175/1520-0426(2000)017<0130: AODFMS>2.0.CO; 2.
[15]Low T B, List R, 1982a.Collision, coalescence, and breakup of raindrops.Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup[J].Journal of the Atmospheric Sciences, 39(7): 1591-1606.DOI: org/10.1175/1520-0469(1982)039<1591: CCABOR>2.0.CO; 2.
[16]Low T B, List R, 1982b.Collision, coalescence, and breakup of raindrops.Part II: Parameterization of fragment size distributions[J].Journal of the Atmospheric Sciences, 39(7): 1607-1619.DOI: org/10.1175/1520-0469(1982)039<1607: CCABOR>2.0.CO; 2.
[17]Marshall J S, Palmer W M, 1948.The distribution of raindrops with size[J].Journal of Meteorology, 5(4): 165-166.DOI: org/10. 1175/1520-0469(1948)005<0165: TDORWS>2.0.CO; 2.
[18]McFarquhar G M, 2004.A new representation of collision-induced breakup of raindrops and its implications for the shapes of raindrop size distributions[J].Journal of the Atmospheric Sciences, 61(7): 777-794.DOI: org/10.1175/1520-0469(2004)061<0777: ANROCB>2.0.CO; 2.
[19]Porcù F, D’Adderio L P, Prodi F, al et, 2014.Rain drop size distribution over the Tibetan Plateau[J].Atmospheric Research, 150(150): 1-30.DOI: 10.1016/j.atmosres.2014.07.005.
[20]Porcù F, D'Adderio LP, Prodi F, al et, 2013.Effects of altitude on maximum raindrop size and fall velocity as limited by collisional breakup[J].Journal of the Atmospheric Sciences, 70(4): 1129-1134.DOI: org/10.1175/JAS-D-12-0100.1.
[21]Prat O P, Barros A P, Testik F Y, 2012.On the Influence of Raindrop Collision Outcomes on Equilibrium Drop Size Distributions[J].Journal of the Atmospheric Sciences, 69 (5): 1534-1546.DOI: org/10.1175/JAS-D-11-0192.1.
[22]Rosenfeld D, Ulbrich C W, 2003.Cloud microphysical properties, processes, and rainfall estimation opportunities[C].Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteorological Monographs, American Meteor Society, No.52, 237-258.
[23]Ryzhkov A V, Kumjian M R, Ganson S M, al et, 2013.Polarimetric radar characteristics of melting hail.Part I: Theoretical simulations using spectral microphysical modeling[J].Journal of Applied Meteorology and Climatology, 52(12): 2849-2870.DOI: org/10.1175/JAMC-D-13-074.1.
[24]Sauvageot H, Koffi M, 2000.Multimodal raindrop size distributions[J].Journal of the Atmospheric Sciences, 57(15): 2480-2492.DOI: org/10.1175/1520-0469(2000)057<2480: MRSD>2.0.CO; 2.
[25]Sekhon R S, Srivastava R C, 1971.Doppler radar observations of drop-size distributions in a thunderstorm[J].Journal of the Atmospheric Sciences, 28(6): 983-994.DOI: org/10.1175/1520-0469(1971)028<0983: DROODS>2.0.CO; 2.
[26]Sempere T, Porra` D J, Creutin J D, 1994.A general formulation for raindrop size distribution[J].Journal of Applied Meteorology and Climatology, 33(12): 1494-1502.DOI: org/10.1175/1520-0450(1994)033<1494: AGFFRS>2.0.CO; 2.
[27]Sempere T, Porra` D J, Creutin J D, 1998.Experimental evidence of a general description of raindrop size distribution properties[J].Journal of Geophysical Research: Atmospheres, 103(D2): 1785-1797.DOI: org/10.1029/97JD02065.
[28]Straub W, Behenga K, Seifert A, al et, 2010.Numerical investigation of collision-induced breakup of raindrops.Part II: Parameterizations of coalescence efficiencies and fragment size distributions[J].Journal of the Atmospheric Sciences, 67(3): 576-588.DOI: org/10.1175/2009JAS3175.1.
[29]Testud J S, Oury R A, Black P, al et, 2001.The concept of "normalized" distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing[J].Journal of Applied Meteorology, 40: 1118-1140.DOI: 10.1175/1520-0450(2001)040<1118: tcondt>2.0.co; 2.
[30]Thurai M, Bringi V N, May P T, 2010.CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia[J].Journal of Atmospheric and Oceanic Technology, 27(5): 932-942.DOI: org/10.1175/2010JTECHA1349.1.
[31]Uijlenhoet R, Smith J A, Steiner M, 2003.The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra[J].Journal of the Atmospheric Sciences, 60(10): 1220-1238.DOI: org/10.1175/1520-0469(2003)60<1220: TMSOEP>2.0.CO; 2.
[32]Ulbrich C W, Atlas D, 1998.Rainfall microphysics and radar properties: analysis methods for drop size spectra[J].Journal of Applied Meteorology and Climatology, 37(9): 912-923. DOI: org/10.1175/1520-0450(1998)037<0912: RMARPA>2.0.CO; 2.
[33]Ulbrich C W, 1983.Natural Variations in the Analytical Form of the Raindrop Size Distribution.Journal of Applied Meteorology and Climatology, 22(10): 1764-1775.DOI: org/10.1175/1520-0450(1983)022<1764: NVITAF>2.0.CO; 2.
[34]Willis P T, 1984.Functional fits to some observed drop size dis tributions and parameterization of rain[J].Journal of the Atmospheric Sciences, 41(9): 1648-1661.DOI: org/10.1175/1520-0469(1984)041<1648: FFTSOD>2.0.CO; 2.
[35]Zawadzki I, Antonio M D A, 1988.Equilibrium raindrop size distributions in tropical rain[J].Journal of the Atmospheric Sciences, 45 (22): 3452-3459.doi.org/10.1175/1520-0469(1988)045<3452: ERSDIT>2.0.CO; 2.
[36]房彬, 郭学良, 肖辉, 2016.辽宁地区不同降水云系雨滴谱参数及其特征量研究[J].大气科学, 40 (6): 1154-1164.DOI: 10. 3878/j.issn.1006-9895.1512.15244.
[37]高建秋, 阮征, 游积平, 等, 2015.广东东莞不同类型云的雨滴谱和降水特征[J].气象科技, 43(6): 1085-1094.DOI: 10.19517/j.1671-6345.2015.06.013
[38]黄兴友, 印佳楠, 马雷, 等, 2019.南京地区雨滴谱参数的详细统计分析及其在天气雷达探测中的应用[J].大气科学, 43(3): 691-704.DOI: 10.3878/j.issn.10069895.1805.18113
[39]蒋强, 卞建春, 李艳, 2020.雨滴下落过程模型雏形的建立[J].高原气象, 39(3): 609-619.DOI: 10.7522/j.issn.1000-0534.2020.00004.
[40]李景鑫, 牛生杰, 王武功, 等, 2010.积层混合云降水雨滴谱特征分析[J].兰州大学学报, 46(6): 56-61.DOI: 10.13885/j.issn.0455-2059.2010.03.014.
[41]刘胜男, 王改利, 2020.DSD参数对双频雷达估测降水的影响研究[J].高原气象, 39(3): 570-580.DOI: 10.7522/j.issn.1000-0534.2019.00093.
[42]王俊, 姚展予, 侯淑梅, 等, 2016.一次飑线过程的雨滴谱特征研究[J].气象学报, 74(3): 450-464.DOI: 10.11676/qxxb2016.034.
[43]岳治国, 梁谷, 2018.陕西渭北一次降雹过程的粒子谱特征分析[J].高原气象, 37(6): 1716-1724.DOI: 10.7522/j.issn. 1000-0534.2018.00023.
[44]张国庆, 孙安平, 周万福, 等, 2009.青海门源雨滴谱特征及降水机制的初步研究[J].高原气象, 28(1): 77-84.
文章导航

/