论文

2019年主汛期湖南两次致灾暴雨过程对比分析

  • 刘红武 ,
  • 胡燕 ,
  • 苏涛 ,
  • 刘焕乾 ,
  • 傅承浩
展开
  • <sup>1.</sup>湖南省气象台,湖南 长沙 410006;<sup>2.</sup>气象防灾减灾湖南省重点实验室,湖南 长沙 410006;<sup>3.</sup>湖南省大气探测技术保障中心,湖南 长沙 410006

收稿日期: 2020-06-29

  网络出版日期: 2021-10-28

基金资助

中国气象局预报员专项(CMAYBY2020-085);湖南省科技厅重点领域研发计划项目(2019SK2161);湖南省业务能力建设项目(NLJS14)

Comparative Analysis of Two Disaster-Induced Rainstorms in Hunan Province in Flood Season of 2019

  • Hongwu LIU ,
  • Yan HU ,
  • Tao SU ,
  • Huanqian LIU ,
  • Chenghao FU
Expand
  • <sup>1.</sup>Hunan Meteorological Observatory,Changsha 410006,Hunan,China;<sup>2.</sup>Hunan Key Laboratory of Meteorological Disaster Prevention and Reduction,Changsha 410006,Hunan,China;<sup>3.</sup>Hunan Meteorological Observation Technology Support Center,Changsha 410006,Hunan,China

Received date: 2020-06-29

  Online published: 2021-10-28

摘要

2019年主汛期湖南出现了两次罕见极端暴雨过程, 多个气象观测站雨量突破历史极值, 共造成十余人死亡(失踪)。利用美国国家环境预报中心的GDAS资料、 观测资料以及再分析资料, 基于HYSPLIT4 (Hybrid Single Particle Lagrangian Integrated Trajectory 4)质点轨道模式追踪及聚类算法, 对比分析了2019年6月6 -9日(简称过程一)、 7月6 -9日(简称过程二)两次致灾暴雨过程的异同。结果表明: (1)两次过程具有极端性、 持续性、 对流性等特点, 过程二降雨强度更大、 强降雨落区更集中, 受灾更严重。(2)两次过程环流形势场存在明显差异, 过程一副热带高压强度显著偏强、 位置偏北, 588 dagpm西脊点较历年同期偏西26个经距, 东北冷涡发展深厚, 850 hPa急流核风速最大达14 m·s-1, 且存在双低涡、 切变线共同影响; 过程二副热带高压稳定维持、 脊线偏南超8个纬距, 850 hPa上存在显著冷式切变, 切变南侧风速大, 强烈的冷暖交汇使暴雨的对流性特征更清晰。(3)两次过程中尺度云团的发生演变略有不同, 过程一表现为人字形切变线东段触发β中尺度对流云团生成, 弱冷空气加入后使其得到有组织化的发展壮大; 过程二受西风带长波槽槽前暖湿气流与冷空气交汇, 不断有αβγ中尺度云团新生、 合并发展, 多尺度对流云团移经同一地点的“列车效应”造成了强致灾性暴雨发生。(4)水汽来源和分布不尽相同, 过程一水汽显著汇合中心位于850 hPa, 水汽源地为南海海域, 有三条水汽传输通道, 主要水汽通道为南海的偏南气流; 过程二显著汇合中心位于925 hPa, 水汽源地为印度洋, 有四条水汽传输通道, 主要水汽传输通道来自孟加拉湾的西南气流。

本文引用格式

刘红武 , 胡燕 , 苏涛 , 刘焕乾 , 傅承浩 . 2019年主汛期湖南两次致灾暴雨过程对比分析[J]. 高原气象, 2021 , 40(5) : 1101 -1114 . DOI: 10.7522/j.issn.1000-0534.2020.00087

Abstract

In the main flood season of 2019, there were two rare extreme rainstorms in Hunan Province, in which rainfalls of several meteorological observation stations exceeded historical extremes, resulting in more than 10 deaths (missing).By using Global Data Assimilation System (GDAS) data and reanalysis data from the National Centers for Environmental Prediction (NCEP), and observation data, based on the particle trajectory tracking and clustering algorithm from Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT4), the similarities and differences of two disaster-induced rainstorm processes from June 6 to 9 (process 1) and July 6 to 9 (process 2) in 2019 are comparatively analyzed.The results show that the two processes are characterized by extreme, continuity and convection, and the second process has greater rainfall intensity, more concentrated heavy rainfall areas and more serious disasters than the first one.Besides, there are obvious difference in that circulation field between the two processes.For the process 1, the intensity of the subtropical high was significantly stronger, its location was northerly, and the western ridge point of 588 dagpm was westward by 26 longitudes than that of the same period over the years.The northeast cold vortex developed deeply.The maximum wind speed of the 850 hPa jet stream core reached 14 m·s-1, and there were double vortex and shear lines.While for process 2, the subtropical high was stable, the ridge line was south by over 8 latitudes.There was a significant cold shear at 850 hPa, and the wind speed on the south side of the shear was large, which led to the strong cold and warm convergence, causing the convective characteristics of the rainstorm clearer.Furthermore, the occurrence and evolution of mesoscale cloud clusters in the two processes are slightly different.For process 1, there was the eastern section of the herringbone shear line triggering the generation of mesoscale convective clouds, which developed and grew in an organized way after the adding of the weak cold air.For process 2, the warm and humid airflow and cold airflow met in front of the long wave trough in the westerlies, and mesoscale cloud clusters of α, β and γ were continuously emerging, merging and developing.The "train effect" of multiscale convective cloud clusters moving through the same place caused strong disaster-induced rainstorm.At last, that source and distribution of water vapor are different.For process 1, the significant convergence center of water vapor was located at 850 hPa.The source of water vapor was the South China Sea.There were three water vapor transmission channels, and the main water vapor channel was the southerly airflow in the South China Sea.For process 2, the significant convergence center was located at 925 hPa.The water vapor sources were the Indian Ocean.There were four water vapor transmission channels, among which the main water vapor transmission channel came from southwest air flow in the Bay of Bengal.

参考文献

[1]蔡荣辉, 陈静静, 文萍, 等, 2019.2017年湖南一次特大致洪暴雨过程的水汽特征[J].干旱气象, 37(2): 288-300.DOI: 10. 11755/j.issn.1006-7639 (2019)-02-0288.
[2]曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象, 39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120.
[3]曾智琳, 谌芸, 朱克云, 等, 2018.2017年“5·7”广州特大暴雨的中尺度特征分析与成因初探[J].热带气象学报, 34(5): 791-805.DOI: 10.16032/j.issn.1004-4963.2018.06.008.
[4]谌芸, 孙军, 徐珺, 等, 2012.北京721特大暴雨极端性分析及思考(一)观测分析与思考[J].气象, 38(10): 1255-1266.
[5]戴泽军, 蔡荣辉, 彭莉莉, 等, 2019.湖南持续性区域暴雨气候特征及暴雨落区分型[J].高原气象, 38(3): 573-582.DOI: 10. 7522/j.issn.1000-0534.2018.00094.
[6]甘璐, 郭文利, 邓长菊, 2017.北京地区两次特大暴雨过程的对比分析[J].干旱气象, 35(2): 239-249.DOI: 10.11755/j.issn. 1006-7639 (2017)-02-0239.
[7]高珩洲, 李国平, 2020.黔东南地形影响局地突发性暴雨的中尺度天气分析与数值试验[J].高原气象, 39(2): 301-310.DOI: 10.7522/j.issn.1000-0534.2019.00079.
[8]何光碧, 肖玉华, 师锐, 2019.一次伴有高原低涡和热带气旋活动的持续性暴雨过程分析[J].高原气象, 38(5): 1004-1016.DOI: 10.7552/j.issn.1000-0534.2018.00131.
[9]侯淑梅, 郭俊建, 张磊, 等, 2017.西风槽与副高相互作用的暴雨过程动热力场结构特征分析[J].气象, 43(2): 151-165.DOI: 10.7519/j.issn.1000-0526.2017.02.003.
[10]江志红, 任伟, 刘征宇, 等, 2013.基于拉格朗日方法的江淮梅雨水汽输送特征分析[J].气象学报, 71(2): 295-304.DOI: 10. 11676/qxxb2013.017.
[11]金爱浩, 曾刚, 余晔, 等, 2018.南亚高压与西太平洋副热带高压经纬向位置配置对中国东部夏季降水的影响[J].热带气象学报, 34(6): 806-818.DOI: 10.16032/j.issn.1004-4965.2018.06.00.
[12]刘国忠, 赖珍权, 钟祥平, 等, 2017.“15·7”广西超长持续性暴雨过程多尺度特征分析[J].热带气象学报, 33(3): 357-367.DOI: 10.16032/j.issn.1004-4965.2017.03.007.
[13]刘红武, 邓朝平, 李国平, 等, 2016.东移影响湖南的西南低涡统计分析[J].气象与环境科学, 39(1): 59-65.DOI: 10.16765/j.cnki.1673-7148.2016.01.008.
[14]卢小丹, 王黎娟, 刘国忠, 等, 2017.两个不同季节台风引发广西特大暴雨的水汽和螺旋度对比分析[J].热带气象学报, 33(3): 375-385.DOI: 10.16032/j.issn.1004-4965.2017.03.009.
[15]陆琛莉, 李海军, 宋刘明, 等, 2018.一次“梅中返春”稳定性持续暴雨过程的预报失误分析[J].气象, 44(1): 132-141.DOI: 10. 7519/j.issn.1000-0526.2018.01.011.
[16]马梁臣, 孙力, 王宁, 2017.东北地区典型暴雨个例的水汽输送特征分析[J].高原气象, 36(4): 960-970.DOI: 10.7522/j.issn. 100-0534.2016.00078.
[17]苗爱梅, 董春卿, 张红雨, 等, 2012.“0811”暴雨过程中MCC与一般暴雨云团的对比分析[J].高原气象, 31(3): 731-744.
[18]苗秋菊, 徐祥德, 施小英, 2004.青藏高原周边异常多雨中心及其水汽输送通道[J].气象, 30(12): 44-47.DOI: 10.3969/j.issn. 1000-0526.2004.12.010.
[19]闵锦忠, 张申?, 杨婷, 2018.一次梅雨锋暴雨发生发展机制诊断与模拟[J].大气科学学报, 41(2): 155-166.DOI: 10.13878/j.cnki.dqkxxb.20160202001.
[20]汪玲瑶, 谌芸, 肖天贵, 等, 2018.夏季江南地区暖区暴雨的统计分析[J].气象, 244(6): 771-780.DOI: 10.7519/j.issn.1000-0526. 2018.06.005.
[21]王华, 李宏宇, 仲跻芹, 等, 2019.京津冀一次罕见的双雨带暴雨过程成因分析[J].高原气象, 38(4): 856-871.DOI: 10.7522/j.issn.1000-0534.2018.00102.
[22]王秀荣, 徐祥德, 王维国, 2007.西北地区春、 夏季降水的水汽输送特征[J].高原气象, 26(4): 749-757.
[23]魏铁鑫, 缪启龙, 段春锋, 等, 2015.近50a东北冷涡暴雨水汽源地分布及其水汽贡献率分析[J].气象科学, 35(1): 60-65.DOI: 10.3969/2013jms.0080.
[24]吴哲珺, 包云轩, 朱霆, 等, 2019.长江流域一次大暴雨过程的低空急流形成和影响机制分析[J].热带气象学报, 35(3): 409-422.DOI: 10.16032/j.issn.1004-4965.2019.038.
[25]徐祥德, 王寅钧, 赵天良, 等, 2014.高原东南缘大气近地层湍能特征与边界层动力、 热力结构相关特征[J].气象, 40(10): 1165-1173.DOI: 10.7519/j.issn.1000-0526.2014.10.001.
[26]许美玲, 段旭, 施晓辉, 等, 2003.突发性暴雨的中尺度对流复合体环境条件的个例分析[J].气象科学, 23(1): 84-91.
[27]杨浩, 江志红, 刘征宇, 等, 2014.基于拉格朗日法的水汽输送气候特征分析-江淮梅雨和淮北雨季的对比[J].大气科学, 38(5): 965-973.DOI: 10.3878/j.issn.1006-9895.1402.13228.
[28]杨磊, 蒋大凯, 王瀛, 等, 2017.“8·16”辽宁特大暴雨多尺度特征分析[J].干旱气象, 35(2): 267-272.DOI: 10.11755/j.issn. 1006-7639 (2017)-02-026.
[29]姚俊强, 杨青, 毛炜峄, 等, 2018.基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析[J].高原气象, 37(1): 68-77.DOI: 10.7522/j.issn.1000-0534.2017.00031.
[30]姚文清, 徐祥德, 张雪金, 2003.1998年长江流域梅雨期暴雨过程的水汽输送特征[J].南京气象学院学报, 26(4): 496-502.DOI: 10.3969/j.issn.1674-7097.2003.04.008.
[31]易升杰, 郑飞, 肖天贵, 2019.西南地区两次典型大暴雨环境场的对比分析[J].气候与环境研究, 24 (1): 73-85.DOI: 10.3878/j.issn.1006-9585.2018.18043.
[32]张红华, 姚秀萍, 高媛, 等, 2018.2016年江淮地区梅汛期首场持续性暴雨的持续原因初探[J].热带气象学报, 34(5): 674-684.DOI: 10.16032/j.issn.1004-4965.2018.05.009.
[33]张剑明, 廖玉芳, 段丽洁, 等, 2011.1960-2009年湖南省暴雨极端事件的气候特征[J].地理科学进展, 30(11): 1395-1402.DOI: 10.11820/dlkxjz.2011.11.009.
[34]张剑明, 廖玉芳, 段丽洁, 等, 2012.湖南近50年极端连续降水的气候变化趋势[J].地理研究, 31(6): 1004-1015.DOI: 10. 11821/yj2012060004.
[35]张文, 寿绍文, 杨金虎, 2007.长江中下游地区汛期极端降水量的异常特征分析[J].气象, 33(3): 61-67.DOI: 10.3969/j.issn. 1000-0526.2007.03.009.
[36]张雅斌, 武麦凤, 侯建忠, 等, 2014.陕西4次台风远距离暴雨过程的水汽条件对比[J].干旱气象, 32(5): 788-797.DOI: 10. 11755/j.issn.1006-7639 (2014)-05-0788.
[37]周林帆, 张述文, 李少英, 等, 2019.城市下垫面对西安地区一次强降水的影响[J].高原气象, 38(4): 773-780.DOI: 10.7522/j.issn.1000-0534.2018.00117.
[38]周玉淑, 颜玲, 吴天贻, 等, 2019.高原涡和西南涡影响的两次四川暴雨过程的对比分析[J].大气科学, 43(4): 813-830.DOI: 10.3878/j.issn.1006-9895.1807.18147.
[39]卓嘎, 徐祥德, 陈联寿, 2002.青藏高原夏季降水的水汽分布特征[J].气象科学, 22(1): 1-7.
文章导航

/