基于气温、 降水、 土壤墒情以及历史干旱灾情等资料, 从干旱时空分布特征、 典型干旱过程诊断、 不合理跃变分析以及与土壤墒情、 干旱灾情的相关性等方面, 分析标准化降水指数(SPI)、 标准化降水蒸散指数(SPEI)、 相对湿润度指数(MI)、 气象干旱综合指数(MCI)在我国东北、 西南和长江中下游地区的适用性。结果发现, 四种指数对干旱的年际变化诊断基本一致, 而对干旱空间分布的诊断, MCI与MI指数与实况更加吻合。针对典型干旱过程的逐日诊断, MCI指数对干旱过程的刻画效果最好, 不合理跃变次数较SPI、 SPEI和MI指数分别下降82.6%、 73.8%和97.8%; 各指数在长江中下游地区不合理跃变次数最少, 其次为西南地区, 东北地区相对较多。与土壤墒情的相关性方面, MCI指数最好, 均通过99%的信度检验, 较SPI、 SPEI和MI指数分别提高9.2%、 54.7%和68.8%; 西南地区代表站与土壤墒情的相关性最好, 其次为长江中下游地区, 东北地区相对较差。与干旱受灾面积的相关性方面, MCI指数也是最好的, 较SPI、 SPEI和MI指数分别提高16.9%、 37.1%和27.6%; 各指数在东北地区与灾情的相关性优于长江中下游地区, 西南地区总体较差。综合来看, MCI指数适用性最好, 这与干旱指数的构造方法及其考虑的干旱影响因子、 时间尺度、 不同时段降水权重等因素密切相关。
Based on the data of temperature, precipitation, soil moisture and historical drought disasters, this paper analyses the applicability of SPI, SPEI, MI and MCI in the northeast, southwest and middle-lower reaches of Yangtze River of China from the aspects of spatial and temporal distribution characteristics of drought, diagnosis of typical drought processes, unreasonable jump times analysis and correlation with soil moisture and drought disasters, etc.The results show that the four indexes are basically the same in diagnosing the interannual variation of drought days, while as to diagnosis of the spatial distribution of drought days, the MCI and MI indexes are more consistent with the actual situation.As far as the daily diagnosis of typical drought processes is concerned, MCI has the best effect on the description of drought process, and the unreasonable jump times are 82.6%, 73.8% and 97.8% lower than that of SPI, SPEI and MI respectively.There are the least unreasonable jump times of each index in the middle-lower reaches of Yangtze River, followed by that in the southwest China and the northeast China.Compared to SPI, SPEI and MI, MCI is the best in the correlation with soil moisture, which has passed the confident level of 99%, and increases by 9.2%, 54.7% and 68.8% respectively.The correlation between the soil moisture and representative stations in southwest China is the best, followed by that in the middle-lower reaches of Yangtze River, and that in the northeast China is relatively poor.In terms of correlation with drought-affected area, MCI is also the best, which is 16.9%, 37.1% and 27.6% higher than SPI, SPEI and MI respectively.The correlation between the indexes and the drought-affected area in northeast China is better than that in the middle-lower reaches of Yangtze River, while that in southwest China is worse.On the whole, the applicability of MCI is the best, which is closely related to the construction methods of drought indexes, drought influence factors, time scales, weight of precipitation in different periods and so on.
[1]American Meteorological Society, 1997.Meteorological drought: Policy statement[J].Bulletin of American Meteorological Society, 78: 847-849.
[2]McKee T B, Doesken N J, Kleist J, 1993.The relationship of drought frequency and duration to time scales[J].Preprints, Eighth Conf on Applied Climatology, Anaheim, CA, American Meteorological Society: 179-184.
[3]McKee T B, Doesken N J, Kleist J, 1995.Drought monitoring with multiple time scales[J].Preprints, Ninth Conf on Applied Climatology, Dallas, TX, American Meteorological Society: 233-236.
[4]Richard R, Heim J R, 2002.A review of twentieth-century drought index used in the United States[J].Bulletin of American Meteorological Society, 83(8): 1149-1165.
[5]Wang L, Chen W, Zhou W, 2014.Assessment of future drought in southwest China based on CMIP5 multimodel projections[J].Advances in Atmospheric Sciences, 31(5): 1035-1050.DOI: 10. 1007/s00376-014-3223-3.
[6]曹博, 张勃, 马彬, 等, 2018.基于SPEI指数的长江中下游流域干旱时空特征分析[J].生态学报, 38(17): 6258-6267.DOI: 10. 5846/stxb201707011185.
[7]丁一汇, 2008.中国气象灾害大典: 综合卷[M].北京: 气象出版社.
[8]韩兰英, 张强, 姚玉璧, 等, 2014.近60年中国西南地区干旱灾害规律与成因[J].地理学报, 69(5): 632-639.DOI: 10.11821/dlxb201405006.
[9]胡实, 莫兴国, 林忠辉, 2015.未来气候情景下我国北方地区干旱时空变化趋势[J].干旱区地理, 38(2): 239-248.DOI: 10. 13826/j.cnki.cn65-1103/x.2015.02.005
[10]李楠, 孙培良, 韩莎莎, 等, 2016.基于Z指数的聊城地区干旱时空特征分析[J].中国农学通报, 32(5): 152-158.
[11]李忆平, 李耀辉, 2017.气象干旱指数在中国的适应性研究进展[J].干旱气象, 35(5): 709-723.DOI: 10.11755/j.issn.1006-7639(2017)-05-0709.
[12]刘诗梦, 张杰, 于涵, 2020.影响初夏江淮流域年代际极端干旱的欧洲关键区能量演变特征分析[J].高原气象, 39(1): 143-152.DOI: 10.7522/j.issn.1000-0534.2019.00004.
[13]刘卫国, 王曼, 丁俊祥, 等, 2013.帕默尔干旱指数在天山北坡典型绿洲干旱特征分析中的适用性[J].中国沙漠, 33(1): 249-257.DOI: 10.7522/j.issn.1000-694X.2013.00034.
[14]马柱国, 华丽娟, 任小波, 2003.中国近代北方极端干湿事件的演变规律[J].地理学报, 58(): 69-74.
[15]王春林, 陈慧华, 唐力生, 等, 2012.基于前期降水指数的气象干旱指标及其应用[J].气候变化研究进展, 8(3): 157-163.DOI: 10.3969/j.issn.1673-1719.2012.03.001.
[16]王春林, 司建华, 赵春彦, 等, 2019.河西走廊近57年来干旱灾害特征时空演化分析[J].高原气象, 38(1): 196-205.DOI: 10. 7522/j.issn.1000-0534.2018.00081.
[17]王慧敏, 郝祥云, 朱仲元, 2019.基于综合气象干旱指数的干旱状况分析——以锡林河流域为例[J].水土保持研究, 26(2): 326-336.
[18]王劲松, 李忆平, 任余龙, 2013.多种干旱监测指标在黄河流域应用的比较[J].自然资源学报, 28(8): 1337-1348.DOI: 10. 11849/zrzyxb.2013.08.007.
[19]王林, 陈文, 2014.标准化降水蒸散指数在中国干旱监测的适用性分析[J].高原气象, 33(2): 423-431.DOI: 10.7522/j.issn. 1000-0534.2013.00048.
[20]王素萍, 王劲松, 张强, 等, 2015.几种干旱指标对西南和华南区域月尺度干旱监测的适用性评价[J].高原气象, 34(6): 1616-1624.DOI: 10.7522/j.issn.1000-0534.2014.00089.
[21]王素萍, 王劲松, 张强, 等, 2020.多种干旱指数在中国北方的适用性及其差异原因初探[J].高原气象, 39(3): 628-640.DOI: 10.7522/j.issn.1000-0534.2019.00049.
[22]王文, 许志丽, 蔡晓军, 等, 2016.基于PDSI的长江中下游地区干旱分布特征[J].高原气象, 35(3): 693-707.DOI: 10.7522/j.issn.1000-0534.2015.00011
[23]王怡璇, 陈伏龙, 冯平, 等, 2020.滦河流域多时间尺度干旱时空特征分析[J].高原气象, 39(2): 347-356.DOI: 10.7522/j.issn. 1000-0534.2019.00034.
[24]韦开, 王全九, 周蓓蓓, 等, 2017.基于降水距平百分率的陕西省干旱时空分布特征[J].水土保持学报, 31(1): 318-322.DOI: 10.13870/j.cnki.stbcxb.2017.01.052.
[25]姚玉璧, 张存杰, 邓振镛, 等, 2007.气象、 农业干旱指标综述[J].干旱地区农业研究, 25(1): 185-189.
[26]姚玉璧, 张强, 李耀辉, 等, 2013.干旱灾害风险评估技术及其科学问题与展望[J].资源科学, 35(9): 1884-1897.
[27]叶笃正, 黄荣辉, 1996.长江黄河流域旱涝规律和成因研究[M].济南: 山东科学技术出版社.
[28]尹晗, 李耀辉, 2013.我国西南干旱研究最新进展综述[J].干旱气象, 31(1): 182-193.DOI: 10.11755/j.issn.1006-7639(2013)-01-0182.
[29]袁文平, 周广胜, 2004.标准化降水指标与Z指数在我国应用的对比分析[J].植物生态学报, 28(4): 523-529.
[30]张存杰, 刘海波, 宋艳玲, 等, 2017.GB/T 20481-2017, 气象干旱等级[M].北京: 中国标准出版社.
[31]张俊, 陈桂亚, 杨文发, 2011.国内外干旱研究进展综述[J].人民长江, 42(10): 65-69.
[32]张立杰, 李健, 2018.基于SPEI和SPI指数的西江流域干旱多时间尺度变化特征[J].高原气象, 37(2): 560-567.DOI: 10.7522/j.issn.1000-0534.2018.00013.
[33]张强, 潘学标, 马柱国, 等, 2009.干旱[M].北京: 气象出版社.
[34]张强, 张良, 崔显成, 等, 2011.干旱监测与评价技术的发展及其科学挑战[J].地球科学进展, 26(7): 763-778.
[35]张强, 邹旭恺, 肖风劲, 2006.GB/T 20481-2006, 气象干旱等级[M].北京: 中国标准出版社.
[36]赵海燕, 高歌, 张培群, 等, 2011.综合气象干旱指数修正及在西南地区的适用性[J].应用气象学报, 22(6): 698-705.
[37]赵一磊, 任福民, 李栋梁, 等, 2013.基于有效降水干旱指数的改进研究[J].气象, 39(5): 600-607.DOI: 10.7519/j.issn.1000-0526.2013.05.008.
[38]郑建萌, 黄玮, 陈艳, 等, 2017.云南极端气象干旱指标的研究[J].高原气象, 36(4): 1039-1051.DOI: 10.7522/j.issn.1000-0534. 2016.00067.
[39]中国气象局, 2007.中国灾害性天气气候图集[M].北京: 气象出版社.
[40]中华人民共和国气候图集编委会, 2002.中华人民共和国气候图集[M].北京: 气象出版社.
[41]邹旭恺, 任国玉, 张强, 2010.基于综合气象干旱指数的中国干旱变化趋势研究[J].气候与环境研究, 15(4): 371-378.
[42]邹旭恺, 张强, 2008.近半个世纪我国干旱变化的初步研究[J].应用气象学报, 19(6): 679-687.