论文

华山景区大风变化特征及偏南大风的天气学研究

  • 白爱娟 ,
  • 张永红 ,
  • 吴佳浩 ,
  • 于进江 ,
  • 丁李敏
展开
  • <sup>1.</sup>成都信息工程大学大气科学学院,四川 成都 610225;<sup>2.</sup>陕西省渭南市气象局,陕西 渭南 714000;<sup>3.</sup>陕西省华阴市华山气象站,陕西 渭南 714200

收稿日期: 2020-07-31

  网络出版日期: 2021-10-28

基金资助

青海省科技厅基础研究项目(2020-ZJ-739-1);国家重点研发计划项目(2018YFC1507802);泸州市科学技术与人才工作局院地校地科技合作研发项目(2019-YD-81)

Analysis on the Variations of Gales and Two Southerly Gale Events in Huashan Mountain Scenic Spot

  • Aijuan BAI ,
  • Yonghong ZHANG ,
  • Jiahao WU ,
  • Jinjiang YU ,
  • Limin Ding
Expand
  • <sup>1.</sup>Chengdu University of Information Technology,Chengdu 610225,Sichuan,China;<sup>2.</sup>Weinan Meteorological Administration,Weinan 714000,Shanxi,China;<sup>3.</sup>Huashan meteorological station of Huayin city,Weinan 714200,Shanxi,China

Received date: 2020-07-31

  Online published: 2021-10-28

摘要

利用2012 -2017年逐小时风速资料, 分析了华山景区大风天气不同时间尺度的变化特征, 并以春秋季对景区索道运行产生严重影响的两次偏南大风为例, 分析了大风形成机制。结果表明: 以17 m·s-1作为大风阈值, 景区大风多发生在21:00(北京时)至次日凌晨, 相反午后到黄昏大风较少发生。华山南峰站位置偏南, 海拔高, 偏南气流与秦岭北坡夜间下山风作用, 导致偏南大风多。华山站靠北, 海拔低, 除偏南大风外, 冷锋后偏北气流影响, 西北大风频次也较高。两次偏南大风前环流一致呈“东高西低”形势, 华山位于华北高压向西北低压过渡的南北向等高线密集带中, 梯度风原理是风速加大的动力机制。大风发生前, 陕西关中为-4 hPa的强3 h变压区, 变压风引起辐合上升, 与高压后部偏南风越过秦岭后的干绝热下沉运动, 加上关中不稳定上升运动, 诱导夜间下山风增强, 是偏南大风形成的热力因子。分析气象要素的变化, 大风前3 h华山站降温5 ℃以上, 前7 h降压4 hPa以上; 且大风前温度露点差大于10 ℃, 气压和气温的超前降低可作为大风预警的有效因子。大风时景区附近的雷达图像有片状弱回波, 但没有大风速区, 表明受地形遮蔽, 距离景区最近的泾河雷达不足以反映大风特征。

本文引用格式

白爱娟 , 张永红 , 吴佳浩 , 于进江 , 丁李敏 . 华山景区大风变化特征及偏南大风的天气学研究[J]. 高原气象, 2021 , 40(5) : 1154 -1163 . DOI: 10.7522/j.issn.1000-0534.2020.00101

Abstract

This paper analyzed the variations on different time scales of gales in the Huashan mountain scenic spot of Shaanxi, by using the hourly observations from the year of 2012 to 2017 in the Huashan’s station.Two representative southerly events were analyzed in this paper to get the mechanism of gales of Huashan.The main conclusions were as follows.Taking the wind velocity of more than 17 m·s-1 as a thread, the gales of Huashan tended to occur from 21:00 (Beijing Time the same as affer) to the next early morning frequently, on the contrary, less gales occurred after noon and before 20:00.The southern peak located at higher altitude and more southward position, so it encountered more southerly gales.The Huashan station meet with not only southerly gale, but also northwestern strong wind, because of its northerly position and lower altitude.During the two gale southerly events, the similar circulation of characterized by ‘East High and West Low’ at the low-level was explored.Huashan was located in the contour-intensive transition region of from North China High to Northwest Low.The dynamic theory of gradient wind resulted in the high velocity.Before the gales, the 3h variable pressure field displayed a strong negative center of lower than -4 hPa in central Shaanxi, which made the convergence and ascending motion.At the same time, the southerly alee was accelerated in the night and enforces the gales, accompanied with the instability-ascending motion.The significant temperature and pressure changes were found before the strong wind.In the autumn gale, the temperature decreased by 5 °C 3 hours before the maximum velocity, accompanying the pressure decreased by 4 hPa about 7 hours before.The early changed pressure and temperature can be the important factors of wind forecasting.From the observations of Jinghe radar site, 100 km away from Huashan, the echoes in the Huashan gale were weakened and cannot display the extreme velocity, because of the terrain occlusion of high mountain peaks.

参考文献

[1]Augustine J A, Howard K W, 1991.Meso-scale convective complexes over the United States during 1986 and 1987[J].Monthly Weather Review, 119(7): 1575-1589.
[2]Cohen A E, Canguakisi J P, 2010.An observational and high-resolution model analysis of gale wind events in the Gulf of California [J].Weather and Forecasting, 25(4): 613-616.
[3]董安祥, 胡文超, 张宇, 等, 2014.河西走廊特殊地形与大风的关系探讨[J].冰川冻土, 36(2): 347-351.
[4]费海燕, 王秀明, 周小刚, 等, 2016.中国强雷暴大风的气候特征和环境参数分析[J].气象, 42(12): 1513-1521.
[5]郭铌, 张杰, 韩涛, 等, 2004.西北特殊地形与沙尘暴发生的关系探讨[J].中国沙漠, 24(5): 60-65.
[6]李耀辉, 张存杰, 高学杰, 2004.西北地区大风日数的时空分布特征[J].中国沙漠, 24(6): 715-723.
[7]刘香娥, 郭学良, 2012.灾害性大风发生机理与飑线结构特征的个例分析模拟研究[J].大气科学, 36(6): 1150-1164.
[8]鲁渊平, 杜继稳, 侯建忠, 2006.陕西省风速风向时空变化特征[J].陕西气象(1): 1-4.
[9]马淑萍, 王秀明, 俞小鼎, 2019.极端雷暴大风的环境参量特征[J].应用气象学报, 30(3): 292-301.
[10]潘新民, 祝学范, 黄智强, 等, 2012.新疆百里风区地形与大风的关系[J].气象, 38(2): 234-237.
[11]邱博, 张录军, 谭慧慧, 2013.中国大风集中程度及气候趋势研究[J].气象科学, 33(5): 543-548.
[12]王传辉, 姚叶青, 夏令志, 等, 2019.2018年初安徽省沿江地区输电线路舞动天气成因分析[J].高原气象, 38(5): 1091-1098.DOI: 10.7522/j.issn.1000-0534.2018.00141.
[13]肖安, 许爱华, 2018.三小时负变压异常指数及对强对流天气的预报意义[J].气象学报, 76(1): 78-91.
[14]杨晓玲, 丁文魁, 袁金梅, 2012.河西走廊东部大风气候特征及预报[J].大气科学学报, 35(1): 121-127.
[15]杨景泰, 隋玉秀, 王健, 等, 2017.大连地区雷暴大风的气候和天气学特征[J].气象与环境学报, 33(6): 49-57.
[16]杨新林, 孙建华, 鲁蓉, 等, 2017.华南雷暴大风天气的环境条件分布特征[J].气象, 3(7): 769-780.
[17]于进江, 2015.浅谈华山景区气象灾害及其预防措施[J].科学技术创新(3): 22-22.
[18]张晓芳, 李宇华, 2010.春季大风的预报和分析[J].黑龙江气象, 27(2): 11-14.
[19]张文军, 李健, 杨庆华, 等, 2019.河西走廊西部一次极端大风天气过程3次风速波动的动力条件分析[J].高原气象, 38(5): 1082-1090.DOI: 10.7522/j.issn.1000-0534.2018.00129.
[20]张嘉荣, 程雪玲, 2020.基于CFD降尺度的复杂地形风场数值模拟研究[J].高原气象, 39(1): 172-184.DOI: 10.7522/j.issn. 1000-0534.2019.00005.
[21]周宏, 杨利鸿, 胡素琴, 等, 2015.2014年南疆西部一次大风天气过程分析[J].沙漠与绿洲气象, 9(6): 50-55.
[22]庄文兵, 章涵, 王建, 等, 2017.基于中尺度和微尺度的复杂地形大风预报方法研究[J].气象科技进展, 7(2): 13-19.
文章导航

/