论文

GPS掩星观测误差和边界层高度的判别

  • 孟恬 ,
  • 杨胜朋 ,
  • 程华
展开
  • <sup>1.</sup>南京信息工程大学资料同化研究与应用联合中心,江苏 南京 210044;<sup>2.</sup>南京信息工程大学大气科学学院,江苏 南京 210044;<sup>3.</sup>安徽省气象台,安徽 合肥 230031

收稿日期: 2020-08-20

  网络出版日期: 2021-10-28

基金资助

国家自然科学基金项目(41875032)

Observation Error of GPS Radio Occultation and Discrimination of Planetary Boundary Layer Height

  • Tian MENG ,
  • Shengpeng YANG ,
  • Hua CHENG
Expand
  • <sup>1.</sup>Joint Center for Data Assimilation Research and Application,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China;<sup>2.</sup>College of Atmospheric Science,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China;<sup>3.</sup>Anhui Meteorological Observatory,Hefei 230031,Anhui,China

Received date: 2020-08-20

  Online published: 2021-10-28

摘要

使用2007 -2014年COSMIC全球海洋掩星资料, 分别用弯角和折射率梯度的极值来判别全球海洋边界层高度(分别记为PBLBA和PBLN), 探讨了边界层高度处的局地波谱宽度(local spectral width,LSW)、 折射率的垂直梯度、 以及弯角和折射率判别的边界层高度差(记为PBLdiff, PBLdiff=PBLBA-PBLN)之间的关系。结果表明: 大气折射率的垂直梯度与LSW存在明显的线性关系, 在第一、 第二边界层高度处, 其相关系数可达0.60和0.68。折射率垂直梯度主要由干项和湿项构成, 在低纬度地区, 湿项是折射率的主要贡献项。折射率垂直梯度湿项与LSW在第一、 第二边界层相关系数可达0.68和0.69。 第一边界层PBLdiff随着折射率垂直梯度增大而增大, 当折射率梯度绝对值达到80 N-unit·km-1和100 N-unit·km-1, PBLdiff可达100 m和160 m。

本文引用格式

孟恬 , 杨胜朋 , 程华 . GPS掩星观测误差和边界层高度的判别[J]. 高原气象, 2021 , 40(5) : 1189 -1201 . DOI: 10.7522/j.issn.1000-0534.2020.00098

Abstract

COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) global ocean RO data from 2007 to 2014 were used, and the extreme values of bending angle and refractivity gradient were used to determine the global marine PBL heights (respectively referred to as PBLBA and PBLN), and the relationship between the LSW at the PBL height, the vertical gradient of the refractivity, and the PBL difference between the bending angle and the refractivity (referred as PBLdiff, PBLdiff=PBLBA-PBLN)were discussed.The results show that there is a clear linear relationship between the vertical gradient of refractivity and LSW.At the first and second PBL height, the correlation coefficients can reach 0.60 and 0.68.The refractivity is mainly composed of dry and wet terms.In low latitudes, the wet term is the main contribution of the refractivity.The correlation coefficient between the vertical gradient of the wet term and the LSW in the first and second PBL height can reach 0.68 and 0.69.The first boundary layer PBLdiff increases with the vertical refractivity gradient.When the absolute value of the refractivity gradient reaches 80 N-unit·km-1 and 100 N-unit·km-1, PBLdiff can reach 100 meters and 160 meters.

参考文献

[1]Anthes A, Ector R, Hunt C, al et, 2012.The COSMIC/FORMOSAT-3 mission: Early results[J].Bulletin of the American Meteorological Society, 89(3): 313-333.DOI: 10.1175/BAMS-89-3-313.
[2]Ao C O, Hajj G A, Meehan T K, al et, 2009.Rising and setting GPS occultations by use of open-loop tracking[J].Journal of Geophysical Research Atmospheres, 114(D4): D04101.DOI: 10.1029/2008jd010483.
[3]Ao C O, Waliser D E, Chan S K, al et, 2012.Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles[J].Journal of Geophysical Research: Atmospheres, 117(D16): D16117.DOI: 10.1029/2012JD017598.
[4]Basha G, Ratnam M V, 2009.Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: Comparison with GPS radio occultation measurements[J].Journal of Geophysical Research Atmospheres, 114(D16): D16101.DOI: 10.1029/2008JD011692.
[5]Beyrich F, 1997.Mixing height estimation from sodar data-A critical discussion[J].Atmospheric Environment, 31(23): 3941-3953.DOI: 10.1016/S1352-2310(97)00231-8.
[6]Born M, Wolf E, Hecht E, 2000.Principles of optic: Electromagnetic theory of propagation, interference and diffraction of light[J].Physics Today, 53(10): 77-78.DOI: 10.1063/1.1325200.
[7]Chan K M, Wood R, 2013, The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data[J].Journal of Geophysical Research: Atmospheres, 118(22): 12, 422-12, 434.DOI: 10.1002/2013JD020147.
[8]Culverwell I D, Lewis H W, Offiler D, al et, 2015.The radio occultation processing package, ROPP[J].Atmospheric Measurement Techniques, 8(4): 1887-1899.DOI: 10.5194 /amt-8-1887-2015.
[9]Dee D P, Uppala S M, Simmons A J, al et, 2011.The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J].Quarterly Journal of the Royal Meteorological Society, 137: 553-597.DOI: 10.1002/qj.828.
[10]Engeln A V, Teixeira J, 2013.A planetary boundary layer height climatology derived from ECMWF reanalysis data[J].Journal of Climate, 26(17): 6575-6590.DOI: 10.1175/JCLI-D-12-00385.1.
[11]Fjeldbo G, Kliore A J, Eshleman V R, 1971.The neutral atmosphere of venus as studied with the mariner V radio occultation experiments[J].Atronomical Journal, 76: 123-140.DOI: 10.1086/111096.
[12]Garratt J R, 1993.Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments-A review[J].Journal of Climate, 6(3): 419-448.DOI: 10.1175/1520-0442(1993) 0062.0.CO; 2.
[13]Gorbunov M E, Gurvich A S, 1998.Microlab-1 experiment: Multipath effects in the lower troposphere[J].Journal of Geophysical Research: Atmospheres, 103(D12): 13819-13826.DOI: 10.1029/98JD00806.
[14]Guo P, Kuo Y H, Sokolovskiy S V, al et, 2011.Estimating atmospheric boundary layer depth using COSMIC radio occultation data[J].Journal of the Atmospheric Sciences, 68(8): 1703-1713.DOI: 10.1175/2011JAS3612.1.
[15]Hande L B, Siems S T, Manton M J, al et, 2015.An evaluation of COSMIC radio occultation data in the lower atmosphere over the southern ocean[J].Atmospheric Measurement Techniques, 8(1): 97-107.DOI: 10.5194/amt-8-97-2015.
[16]Hennemuth B, Lammert A, 2006.Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter[J].Boundary-Layer Meteorology, 120(1): 181-200.DOI: 10. 1007/s10546-005-9035-3.
[17]Ho S P, Peng L, Anthes R A, al et, 2014.Marine boundary layer heights and their longitudinal, diurnal, and interseasonal variability in the southeastern pacific using COSMIC, CALIOP, and radiosonde data[J].Journal of Climate, 28(7): 2856-2872.DOI: 10.1175/JCLI-D-14-00238.1.
[18]Kumar K K, Jain A R, 2006.L band wind profiler observations of convective boundary layer over Gadanki, India (13.5°N, 79.2°E)[J].Radio Science, 41(2): RS2004.DOI: 10.1029/2005RS003259.
[19]Kursinski E R, Hajj G A, Schofield J T, al et, 1997.Observing earth's atmosphere with radio occultation measurements using the global positioning system[J].Journal of Geophysical Research Atmospheres, 102(D19): 23429-23465.DOI: 10.1029/97JD01569.
[20]Liu H, Kuo Y H, Sokolovskiy S, al et, 2018.A quality control procedure based on bending angle measurement uncertainty for radio occultation data assimilation in the tropical lower troposphere[J].Journal of Atmospheric and Oceanic Technology, 35(10): 2117-2131.DOI: 10.1175/JTECH-D-17-0224.1.
[21]Medeiros B, Hall A, Stevens B, 2005.What controls the mean depth of the PBL?[J].Journal of Climate, 18(16): 3157-3172.DOI: 10.1175/JCLI3417.1.
[22]Russell P B, Uthe E E, Ludwig F L, al et, 1974.A comparison of atmospheric structure as observed with monostatic acoustic sounder and lidar techniques[J].Journal of Geophysical Research, 79(36): 5555-5566.DOI: 10.1029/JC079i036p05555.
[23]Seibert P, Beyrich F, Gryning S E, al et, 2000.Review and intercomparison of operational methods for the determination of the mixing height[J].Atmospheric Environment, 34(7): 1001-1027.DOI: 10.1016/S1352-2310(99)00349-0.
[24]Seidel D J, Ao C O, Li K, 2010.Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis[J].Journal of Geophysical Research Atmospheres, 115(D16113).DOI: 10.1029/2009JD013680.
[25]Smith E K, Weintraub S, 1953.The constants in the equation for atmospheric refractive index at radio frequencies[J].Proceedings of the IRE, 50(8): 1035-1037.DOI: 10.1109/JRPRO C. 1953. 274297.
[26]Sokolovskiy S, Kuo Y H, Rocken C, al et, 2006.Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode[J].Geophysical Research Letters, 33(12): 252-272.DOI: 10.1029/2006GL025955.
[27]Sokolovskiy S, Rocken C, Schreiner W, al et, 2010.On the uncertainty of radio occultation inversions in the lower troposphere[J].Journal of Geophysical Research: Atmospheres, 115(D22).DOI: 10.1029/2010JD014058.
[28]Sokolovskiy S, Sergey V, 2001.Tracking tropospheric radio occultation signals from low earth orbit[J].Radio Science, 36(3): 483-498.DOI: 10.1029/1999RS002305.
[29]Sokolovskiy S, Sergey, 2003.Effect of superrefraction on inversions of radio occultation signals in the lower troposphere[J].Radio Science, 38(3): p24.1-24.14.DOI: 10.1029/2002RS002728.
[30]White A B, Fairall C W, Thomson D W, 1991.Radar observations of humidity variability in and above the marine atmospheric boundary layer[J].Journal of Atmospheric and Oceanic Technology, 8(5): 639-658.DOI: 10.1175/1520-0426(1991)008<0639: ROOHVI> 2.0.CO; 2.
[31]Wu D, Hu Y, Mccormick M P, al et, 2008.Deriving marine-boundary-layer lapse rate from collocated CALIPSO, MODIS, and AMSR-E data to study global low-cloud height statistics[J].IEEE Geoscience and Remote Sensing Letters, 5(4): 649-652.DOI: 10.1109/ LGRS.2008.2002024.
[32]Xie F, 2014.Visiting Scientist Report 21: Investigation of methods for the determination of the PBL height from RO observations using ECMWF reanalysis data[R].SAF/ROM/DMI /REP/VS21/001.
[33]Xie F, Wu D L, Ao C O, al et, 2012.Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean[J].Atmospheric Chemistry and Physics, 12(2): 903-918.DOI: 10.5194/acp-12-903-2012.
[34]李斐, 邹捍, 周立波, 等, 2017.WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J].高原气象, 36(2): 340-357.DOI: 10.7522/j.issn.1000-0534.2016.00084.
[35]李雪洮, 梁捷宁, 郭琪, 等, 2020.利用大涡模式模拟黄土高原地区对流边界层特征[J].高原气象, 39(3): 523-531.DOI: 10. 7522/j.issn.1000-0534.2019.00050.
[36]廖麒翔, 赵小峰, 石汉青, 等, 2015.基于COSMIC资料的边界层高度时空特征分析[J].气象科学, 35(6): 737-743.DOI: 10. 3969/2015jms.0066.
[37]刘艳, 唐南军, 杨学胜, 等, 2015.利用COSMIC/GPS掩星折射率资料研究海洋边界层高度的特点[J].热带气象学报, 31(1): 43-50.DOI: 10.16032/j.issn.1004-4965.2015.01.005.
[38]马元仓, 李岩瑛, 杨吉萍, 等, 2019.青海中北部边界层高度与不同灾害天气的关系[J].高原气象, 38(5): 1048-1057.DOI: 10. 7522/j.issn.1000-0534.2018.00136.
[39]徐晓华, 刘树纶, 罗佳, 2018.利用COSMIC掩星折射指数分析全球大气边界层顶结构变化[J].武汉大学学报·信息科学版, 43(1): 94-100.DOI: 10.13203/j.whugis20160183.
[40]许鲁君, 刘辉志, 徐祥德, 等, 2018.WRF模式对青藏高原那曲地区大气边界层模拟适用性研究[J].气象学报, 76(6): 955-967.DOI: 10.11676/qxxb2019.059.
[41]杨显玉, 吕雅琼, 文军, 等, 2020.不同参数化方案和再分析资料在典型高原湖泊地区的适用效果评估分析[J].高原气象, 39 (6): 1195-1206.DOI: 10.7522/j.issn.1000-0534.2020.00051.
[42]余小嘉, 杨胜朋, 蒋熹, 2019.COSMIC 掩星资料在青藏高原地区的偏差特征[J].高原气象, 38( 2): 288-298.DOI: 10.7522/j.issn.1000-0534. 2018.00162.
[43]赵采玲, 李耀辉, 柳媛普, 等, 2019. 中国西北地区大气边界层高度变化特征—基于探空资料与 ERA-Interim 再分析资料[J].高原气象, 38(6): 1181-1193.DOI: 10.7522/j.issn.1000-0534. 2018.00152.
[44]周文, 杨胜朋, 蒋熹, 等, 2018.利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J].气象学报, 76(1): 117-133.DOI: 10.11676/qxxb2017.069.
[45]邹晓蕾, 2012.GPS无线电掩星资料特点[J].气象科技进展, (5): 49-54.DOI: 10.3969/j.issn.2095-1973.2012.05.007.
文章导航

/