论文

青藏高原鄂陵湖结冰期升温特征研究

  • 王梦晓 ,
  • 文莉娟 ,
  • 李照国 ,
  • 苏东生
展开
  • <sup>1.</sup>中国科学院西北生态环境资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000;<sup>2.</sup>中国科学院大学,北京 100049

收稿日期: 2020-09-14

  网络出版日期: 2021-10-28

基金资助

国家重点研发计划政府间国际科技创新合作项目(2019YFE0197600);中德科学中心中德合作项目(GZ1259);中科院“西部之光”计划西部青年学者A类项目(Y929641001);中国科学院“西部之光”重点实验室交叉团队项目

Study on the Warming Characteristics during the Ice-covered Period of Ngoring Lake in the Qinghai-Xizang Plateau

  • Mengxiao WANG ,
  • Lijuan WEN ,
  • Zhaoguo LI ,
  • Dongsheng SU
Expand
  • <sup>1.</sup>Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Lanzhou 730000,Gansu,China;<sup>2.</sup>University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2020-09-14

  Online published: 2021-10-28

摘要

大部分结冰湖泊在封冻期的湖温都稳定维持在一定温度, 而在青藏高原典型湖泊鄂陵湖2015 -2016年观测到的湖温在冰期会出现持续上升现象, 且这种现象普遍存在于整层水体, 但目前出现这一现象的原因尚不明确。本文利用鄂陵湖站点观测数据和湖温观测数据、 Enonteki? Kilpisj?rvi Kyl?keskus站点观测数据、 MODIS地表温度数据、 中国气象局降水数据和NCEP-DOE再分析资料评估了LAKE2.3模式在鄂陵湖的适用性, 分析了局地气候特征和影响水体中辐射传输的主要物理参数对冰期湖温持续上升的影响。评估结果表明, LAKE2.3能够很好的模拟出鄂陵湖的温度变化及其内部的热力层结, 特别是结冰期, 模拟和观测的湖温廓线较为吻合。冰厚的模拟值较观测值偏小约30%, 可能是由于岸边观测和一维模式的限制, 无法模拟出由于三维动力作用而造成的湖冰在岸边堆积现象。敏感性实验结果显示, 高原较强的向下短波辐射是造成鄂陵湖冰期湖温持续上升的主要气候因子, 较大的风速使湖温上升幅度和速率增大, 较小的向下长波辐射使冰期明显缩短。冰期湖温上升速率和幅度随着冰反照率和冰消光系数的增大而减小, 无冰期较深层的湖温随着水消光系数的增大而减小。

本文引用格式

王梦晓 , 文莉娟 , 李照国 , 苏东生 . 青藏高原鄂陵湖结冰期升温特征研究[J]. 高原气象, 2021 , 40(5) : 965 -976 . DOI: 10.7522/j.issn.1000-0534.2020.00112

Abstract

The water temperature of most of the frozen lakes is stable at a certain value during the ice period.However, the water temperature of Ngoring Lake, a typical lake in the Qinghai-Xizang Plateau, will continue to rise during the ice period, and this phenomenon generally exists in the whole water body, but the reason for this phenomenon is still unclear.Based on station observation and lake temperature observation data in Ngoring Lake, Enonteki? Kilpisj?rvi Kyl?keskus station observation data, MODIS surface temperature data, China Meteorological Administration precipitation data and NCEP-DOE reanalysis data, the applicability of LAKE2.3 model in Ngoring lake was evaluated, and the influence of local climate characteristics and main physical parameters affecting radiation transmission in water body on the phenomenon is analyzed.The assessment results show that LAKE2.3 can well simulate the temperature change and thermal stratification in Ngoring lake, especially during the ice period, and the simulated and observed lake temperature profiles are relatively consistent.However, the simulated ice thickness is about 30% smaller than the observed value, which may be due to the limitation of shore observation and one-dimensional model that can’t simulate the lake ice accumulation phenomenon caused by three-dimensional dynamic action.The results of sensitivity experiments show that the strong downward short-wave radiation is the main climate factor that causes the continuous rise of water temperature in Ngoring Lake during the ice period.The larger wind speed further increases the rising range and speed of water temperature range and rate of the temperature rise, while the smaller downward long wave radiation shortens the ice duration.The rising rate and amplitude of lake temperature in ice period decrease when ice albedo and ice extinction coefficient increased, while the temperature of deep layer of the lake in ice free period decreases with the increase of water extinction coefficient.

参考文献

[1]Adrian R, Oreilly C M, Zagarese H, al et, 2009.Lakes as sentinels of climate change[J].Limnoligy and Oceanography, 54(6): 2283-2297.
[2]Dokulil M T, 2014.Predicting summer surface water temperatures for large Austrian lakes in 2050 under climate change scenarios[J].Hydrobiologia, 731(1): 19-29.DOI: 10.1007/s10750-013-1550-5.
[3]Duan A M, Xiao Z X, 2015.Does the climate warming hiatus exist over the Tibetan Plateau?[J].Scientific Reports, 5(1): 13711.DOI: 10.1038/srep13711.
[4]Efremova T, Palshin N, Zdorovennov R, 2013.Long-term characteristics of ice phenology in Karelian lakes[J].Estonian Journal of Earth Sciences, 62(1): 33-41.DOI: 10.3176/earth.2013.04.
[5]Fang X, Stefan H G, 1996.Long-term lake water temperature and ice cover simulations/measurements[J].Cold Regions Science and Technology, 24(3): 289-304.
[6]Gerken T, Biermann T, Babel W, al et, 2013.A modelling investigation into lake-breeze development and convection triggering in the Nam-Co Lake basin, Tibetan Plateau[J].Theoretical and Applied Climatology, 117(1): 149-167.DOI: 10.1007/s00704-013-0987-9.
[7]Grenfell T C, 1979.The effects of ice thickness on the exchange of solar radiation over the polar oceans[J].Journal of Glaciology, 22(87): 305-320.
[8]Hardenbicker P, Viergutz C, Becker A, al et, 2017.Water temperature increases in the river Rhine in response to climate change[J].Regional Environmental Change, 17(1): 299-308.DOI: 10. 1007/s10113-016-1006-3.
[9]Immerzeel W W, Ludovicus P H, Marc F P, 2010.Climate change will affect the asian water towers[J].Journal of Glaciology, 328: 1382-1385.DOI: 10.1126/science.1187443.
[10]Kanamitsu M, Ebisuzaki W, Woollen J, al et, 2002.Ncep-Doe amip-Ii reanalysis (R-2)[J].American Meteorological Society, 121(13): 1631-1643.DOI: 10.1175/BAMS-83-11-1631.
[11]La Z, Yang K, Wang J B, al et, 2016.Quantifying evaporation and its decadal change for Lake Nam-Co, central Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 121(13): 7578-7591.DOI: 10.1002/2015JD024523.
[12]Lei R B, Lepp?ranta M, Erm A, al et, 2011.Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009[J].Estonian Journal of Earth Sciences, 60(1): 50-64.DOI: 10.3176/earth.2011.1.05.
[13]Lepp?ranta M, Lindgren E, Shirasawa K, 2017.The heat budget of lake Kilpisj?rvi in the Arctic tundra[J].Hydrology Research, 48(4): 969-980.DOI: 10.2166/nh.2016.171.
[14]Lepp?ranta M, Lindgren E, Wen L J, al et, 2019.Ice cover decay and heat balance in lake Kilpisj?rvi in Arctic tundra[J].Journal of Limnology, 78(2): 163-175.DOI: 10.4081/jlimnol.2019.1879.
[15]Lepp?ranta M, Terzhevik A, Shirasawa K, 2010.Solar radiation and ice melting in Lake Vendyurskoe, Russian Karelia[J].Hydrology Research, 41(1): 50-62.
[16]Li Z G, Ao Y H, Lyu S H, al et, 2018.Investigation of the ice surface Albedo in the Tibetan Plateau lakes based on the field observation and modis products[J].Journal of Glaciology, 64(245): 506-516.DOI: 10.1017/jog.2018.35.
[17]Li Z G, Lyu S H, Ao Y H, al et, 2015.Long-term energy flux and radiation balance observations over lake Ngoring, Tibetan Plateau[J].Atmospheric Research, 155: 13-25.DOI: 10.1016/j.atmosres.2014.11.019.
[18]Li Z G, Lyu S H, Wen L J, al et, 2020.Study of freeze-thaw cycle and key radiation transfer parameters in a Tibetan Plateau lake using LAKE2.0 model and field observations[J].Journal of Glaciology, 45: 1-16.DOI: 10.1017/jog.2020.87.
[19]Oreilly C, Sharma S, Hampton S E, al et, 2015.Rapid and highly variable warming of lake surface waters around the globe[J].Geophysical Research Letters, 42(24): 399-406.DOI: 10. 1002/2015GL066235.
[20]Qin B Q, Zhu G W, Gao G, al et, 2009.A drinking wate crisis in lake Taihu, China: Linkage to climatic variability and lake management[J].Environmental Management, 45(1): 105-112.DOI: 10.1007/s00267-009-9393-6.
[21]Ramp C, Delarue J, Palsb?ll P J, 2015.Adapting to a warmer ocean—seasonal shift of baleen whale movements over three decades[J].Plos One, 10(3): 1-15.DOI: 10.1371/journal.pone. 0121374·Source: PubMed.
[22]R?sner R, D?rthe C, Navarra M, al et, 2012.Trend analysis of weekly temperatures and oxygen concentrations during summer stratification in Lake Plu?see: A long-term study[J].Limnology and Oceanography, 57(5): 1479-1491.DOI: 10.4319/lo.2012.57. 5.1479.
[23]Saloranta T, Forsius M, Arvola L, al et, 2009.Impacts of projected climate change on thermodynamics of a shallow and deep lake in Finland: Model simulations and Bayesian uncertainty analysis[J].Hydrology Research, 40(2): 234-248.DOI: 10.2116/nh.2009.030.
[24]Schmid M, Hunziker S, Wüest A, 2014.Lake surface temperatures in a changing climate: A global sensitivity analysis[J].Climatic Change, 124(1/2): 301-315.DOI: 10.1007/s10584-014-1087-2.
[25]Sharma S, Gray D K, Read J S, 2015.A global database of lake surface temperatures collected by in situ and satellite methods from 1095-2009[J].Climatic Change, 2(1): 1-19.DOI: 10.1038/sdata.2015.8.
[26]Song C Q, Huang B, Ke L H, 2013.Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data[J].Remote Sensing of Environment, 135: 25-35.DOI: 10.1016/j.rse.2013.03.013.
[27]Stepanenko V M, Lykossov V N, 2005.Numerical modeling of heat and moisture transfer processes in a system lake-soil[J].Russian Journal for Meteorology and Hydrology, 3: 95-104.
[28]Stepanenko V, Mammarella I, Ojala A, al et, 2016.Lake 2.0: A model for temperature, methane, carbon dioxide and oxygen dynamics in lakes[J].Geoscientific Model Development, 9(5): 1977-2006.DOI: 10.5194/gmd-9-1977-2016.
[29]Stepanenko V M, Machul’skaya E E, Glagolev M V, al et, 2011.Numerical modeling of methane emissions from lakes in the permafrost zone[J].Izvestiya, Atmospheric and Oceanic Physics, 47(2): 252-264.DOI: 10.1134/s0001433811020113.
[30]Stepanenko V M, Repina I A, Ganbat G, al et, 2019.Numerical simulation of ice cover of Saline lakes[J].Izvestiya, Atmospheric and Oceanic Physics, 55(1): 129-138.DOI: 10.1134/s0001433819010092.
[31]Thiery W I M, Stepanenko V M, Fang X, al et, 2014.Lakemip Kivu: Evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models[J].Tellus A: Dynamic Meteorology and Oceanography, 66(1): 1-18.DOI: 10.3402/tellusa.v66.21390.
[32]Wan W, Long D, Hong Y, al et, 2016.A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014[J].Scientific Data, 3: 160039.DOI: 10.1038/sdata.2016.39.
[33]Weitere M, Vohmann A, Schulz N, al et, 2010.Linking environmental warming to the fitness of the invasive clam Corbicula fluminea[J].Global Change Biology, 15(12): 2838-2851.DOI: 10. 10111/j.1365-2486.2009.01925.X.
[34]Wen L J, Lv S H, Li Z G, al et, 2015.Impacts of the two biggest lakes on local temperature and precipitation in the Yellow River source region of the Tibetan Plateau[J].Advances in Meteorology, (d14): 248031.DOI: 10.1155/2015/248031.
[35]Wen L J, Lyu S H, Kirillin G, al et, 2016.Air-lake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands[J].Tellus A: Dynamic Meteorology and Oceanography, 68(1): 31091.DOI: 10.3402/tellusa.v68. 31091.
[36]Yang K, Wu H, Qin J, al et, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J].Global and Planetary Change, 112: 79-91.DOI: 10. 1016/j.gloplacha.2013.12.001.
[37]Zhang G Q, Luo W, Chen W F, al et, 2019.A robust but variable lake expansion on the Tibetan Plateau[J].Science Bulletin, 64(18): 1306-1309.DOI: 10.1016/j.scib.2019.07.018.
[38]Zhang G Q, Xie H J, Qin J, al et, 2014a.Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J].Journal of Geophysical Research Atmospheres, 119(14): 8552-8567.DOI: 10.1002/2014JD021615.
[39]Zhang H, Shan B Q, Ao L, al et, 2014b.Past atmospheric trace metal deposition in a remote lake (Lake Ngoring) at the headwater areas of Yellow River, Tibetan Plateau[J].Environmental Earth Sciences, 72(2): 399-406.DOI: 10.1007/s12665-013-2960-4.
[40]Zolfaghari K, Duguay C R, Khetrollah P H, 2017.Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model[J].Hydrology and Earth System Sciences, 21(1): 377-391.DOI: 10.5194/hess-2016-82.
[41]杜娟, 文莉娟, 苏东生, 2019.三套再分析资料在青藏高原湖泊模拟研究中的适用性分析[J].高原气象, 38(1): 101-113.DOI: 10.7522/j.issn1000-0534201800110.
[42]方楠, 阳坤, 拉珠, 等, 2017.WRF 湖泊模型对青藏高原纳木错湖的适用性研究[J].高原气象, 36(3): 610-618.DOI: 10.7522/j.issn.1000-0534.2016.00038.
[43]李庚辰, 刘足根, 张敏, 等, 2015.升温对超富营养型浅水湖泊沉积物营养盐动态迁移的影响[J].生态学报, 35(12): 4016-4025.DOI: 10.5846/stxb201309102244.
[44]李照国, 吕世华, 文莉娟, 等, 2016.一次干冷空气过境对鄂陵湖地区大气边界层过程的影响[J].高原气象, 35(5): 1200-1211.DOI: 10.7522/j.issn.1000-0534.2015.00076.
[45]尚盈辛, 宋开山, 蒋盼, 等, 2018.青藏高原典型湖库光学吸收特性与光合有效辐射衰减系数初步研究[J].湖泊科学, 30(3): 802-811.DOI: 10.13448/j.cnki.jalre.2012.07.030.
[46]沈德福, 李世杰, 姜永见, 等, 2012.黄河源区湖泊水环境特征及其对气候变化的响应[J].干旱区资源与环境, 26(7): 91-97.DOI: 10.7522/j.issn.1000-0534.2017.00069.
[47]宋兴宇, 文莉娟, 李茂善, 等, 2020.不同湖泊模式对青藏高原典型湖泊适用性对比研究[J].高原气象, 39(2): 213-225.DOI: 10.7522/j.issn.1000-0534.2019.00102.
[48]汪关信, 2020.青海湖湖冰特征及其变化[D].兰州: 兰州大学, 1-77.
[49]许鲁军, 刘辉志, 2015.云贵高原洱海湖泊效应的数值模拟[J].气象学报, 73(4): 789-802.
[50]杨显玉, 文军, 2012.扎陵湖和鄂陵湖大气边界层特征的数值模拟[J].高原气象, 31(4): 927-934.
[51]朱立平, 彭萍, 张国庆, 等, 2020.全球变化下青藏高原湖泊在地表水循环中的作用[J].湖泊科学, 32(3): 597-608.DOI: 10. 18307/2020.0301.
文章导航

/