论文

黄土高原不同作物下垫面陆气水热交换的模拟研究

  • 晋伟 ,
  • 奥银焕 ,
  • 文小航 ,
  • 李照国 ,
  • 孟宪红 ,
  • 李江林 ,
  • 赵刚 ,
  • 邓明珊 ,
  • 谢丽君 ,
  • 陈自航
展开
  • 1. 成都信息工程大学大气科学学院 高原大气与环境四川省重点实验室,四川 成都 610225
    2. 中国科学院西北生态环境资源研究院 中国科学院寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
    3. 中国科学院大学,北京 100049
    4. 甘肃省农业科学院旱地农业研究所,甘肃 兰州 730070

晋伟(1998 -), 男, 四川成都人, 硕士研究生, 主要从事干旱半干旱区陆面过程模拟研究. E-mail:

收稿日期: 2022-03-30

  修回日期: 2022-08-15

  网络出版日期: 2024-03-27

基金资助

国家自然科学基金项目(41975014); 甘肃省科技计划项目(22JR5RA048); 中国科学院青年创新促进会项目(QCH2019004)

Simulation of Land-Atmosphere Water and Heat Exchange over the Underlying Surface of Different Crops on the Loess Plateau

  • Wei JIN ,
  • Yinhuan AO ,
  • Xiaohang WEN ,
  • Zhaoguo LI ,
  • Xianhong MENG ,
  • Jianglin LI ,
  • Gang ZHAO ,
  • Mingshan DENG ,
  • Lijun XIE ,
  • Zihang CHEN
Expand
  • 1. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,School of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China
    4. Institute of Dryland,Gansu Academy of Agricultural Sciences,Lanzhou 730070,Gansu,China

Received date: 2022-03-30

  Revised date: 2022-08-15

  Online published: 2024-03-27

摘要

黄土高原农田种植结构的改变对陆面能量和水分交换、 区域蒸散发等产生影响, 不同作物下垫面复杂的水热耦合机制在黄土高原陆-气相互作用中起着重要作用。本文利用陇东黄土高原2019 -2021年共计34个月的观测数据, 结合耦合了作物模块的通用陆面模式(Community Land Model with BGC Biogeochemistry and prognostic crop, CLM5.0-BGCCROP)对黄土高原不同作物下垫面(冬小麦、 玉米、 苹果林地)的陆面特征进行离线单点模拟, 以验证CLM5.0陆面过程模式在黄土高原农田地区的模拟能力, 对比分析不同作物下垫面土壤温湿度和地表能量通量的差异。结果表明: (1)CLM5.0对土壤温湿度特征的模拟效果较好, 平均均方根误差分别小于2.5 ℃和0.1 m3·m-3, 小麦地土壤温度模拟值偏高, 玉米地和苹果林地土壤温度模拟存在冷偏差。生长期在旱期的冬小麦造成土壤干燥的程度大于玉米, 苹果林地因根系丰富, 吸收了更多的土壤水, 使土壤整体更加干燥。(2)模拟偏差一部分是由于在模式中将作物下垫面设置为单一作物类型(冬小麦、 玉米和苹果林地)时, 高估(低估)了(非)生长期作物的叶面积指数, 低估(高估)了地表反照率, 高估(低估)了净辐射通量, 更多(少)的能量转化为感热潜热。(3)另一部分偏差来自于农田不同的作物管理方式, 如实际上作物收割后并不完全翻耕为裸土, 模式高估了小麦地和玉米地收割后的土壤温度和土壤液态水含量; 模式中没有地膜覆盖选项, 导致玉米地土壤温度、 土壤液态水含量模拟偏低, 模拟平均偏差约-1.84 ℃和-0.058 m3·m-3。(4)冬小麦-玉米混合下垫面模拟试验能较好地模拟地表能量通量, 净辐射、 感热通量、 潜热通量的模拟平均偏差分别为-6.13 W·m-2、 11.46 W·m-2、 -1.97 W·m-2。在生长期内, 冠层蒸腾作用占主导, 随着作物叶面积指数的增加, 感热通量减少, 土壤温度降低, 潜热通量增加, 土壤液态水含量减少。

本文引用格式

晋伟 , 奥银焕 , 文小航 , 李照国 , 孟宪红 , 李江林 , 赵刚 , 邓明珊 , 谢丽君 , 陈自航 . 黄土高原不同作物下垫面陆气水热交换的模拟研究[J]. 高原气象, 2023 , 42(3) : 671 -686 . DOI: 10.7522/j.issn.1000-0534.2022.00078

Abstract

Changes in the planting structure of farmland on the Loess Plateau impact land surface energy and water exchange, regional evapotranspiration, etc.The complex hydrothermal coupling mechanism of different crop underlying surfaces plays an essential role in the land-atmosphere interaction on the Loess Plateau.In this paper, based on the observation data of 34 months from 2019 to 2021 in the east of Gansu province, combined with CLM5.0-BGCCROP coupled with the crop module, the land surface characteristics of different typical crops (winter wheat, corn, and apple forest) on the Loess Plateau were offline single-point simulated.To verify the simulation ability of CLM5.0 on the land surface processes of agricultural fields on the Loess Plateau and compare the differences in soil temperature, soil liquid water content, and surface energy fluxes of different crops.The results showed that: (1) CLM5.0 has a better simulation effect on soil temperature and liquid water content characteristics, average RMSE is less than 2.5 ? and 0.1 m3·m-3, respectively.The simulated soil temperature values in the wheat field are high, and there is a cold bias in the corn and apple fields.Winter wheat, which has a dry growth period, caused more soil drying than corn.Apple forest, which has a rich root system, absorbed more soil water, making the soil drier overall.(2) Part of the simulation bias is due to setting crop underlying surfaces to a single crop functional type in the model, overestimating the leaf area index of crops during the growth period, underestimating the surface albedo, overestimating the net radiation flux, and converting more energy flux into sensible and latent heat flux.(3) Another part of the simulation bias comes from the diverse crop management methods in the farmland.For example, crop fields are not completely tilled to bare soil after harvest, and the model overestimates soil temperature and soil liquid water content in wheat and corn fields.The model does not have the mulching option, which leads to the low simulated soil temperature and soil liquid water content in corn fields, about 1.84 ? and 0.058 m3·m-3, respectively.(4) The winter wheat and corn mixed crop underlying surface simulation experiment could better simulate the surface energy fluxes, and the simulated average deviations of net radiation, sensible heat flux, and latent heat flux were -6.13 W·m-2, 11.46 W·m-2, -1.97 W·m-2, respectively.During the growth period, canopy transpiration dominates, and with the increase of crop leaf area index, sensible heat flux decreases, soil temperature decreases, latent heat flux increases, and soil liquid water content decreases.

参考文献

null
Beaudoing H Rodell M2022.NASA/GSFC/HSL (2020), GLDAS Noah Land Surface Model L4 3 hourly 0.25 x 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed:[20-Feb-2022].DOI: 10.5067/E7TYRXPJKWOQ .
null
Boas T Bogena H Grünwald T, et al, 2021.Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0[J].Geoscientific Model Development, 14: 573-601.DOI: 10.5194/gmd-14-573-2021 .
null
Chen X Yu Y Chen J B, et al, 2016.Seasonal and interannual variation of radiation and energy fluxes over a rain-fed cropland in the semi-arid area of Loess Plateau, northwestern China[J].Atmospheric Research176-177: 240-253.DOI: 10.1016/j.atmosres.2016.03.003 .
null
Deng M S Meng X H Lu Y Q, et al, 2021.Impact and sensitivity analysis of soil water and heat transfer parameterizations in community land surface model on the Tibetan Plateau[J].Journal of Advances in Modeling Earth Systems, 13.DOI: 10.1029/2021MS002670 .
null
Deng M S Meng X H Lyv Y Q, et al, 2020.Comparison of soil water and heat transfer modeling over the Tibetan Plateau using two Community Land Surface Model (CLM) versions[J].Journal of Advances in Modeling Earth Systems, 12.DOI: 10.1029/2020MS002189 .
null
Han T T Lu H F Y H, et al, 2021.Assessing the effects of vegetation cover changes on resource utilization and conservation from a systematic analysis aspect[J].Journal of Cleaner Production, 293.DOI: 10.1016/j.jclepro.2021.126102 .
null
Hartley A J MacBean N Georgievski G, et al, 2017.Uncertainty in plant functional type distributions and its impact on land surface models[J].Remote Sensing of Environment, 203: 71-89.DOI: 10.1016/j.rse.2017.07.037 .
null
Kucharik C J Foley J A Delire C, et al, 2000.Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure[J].Global Biogeochem Cycles, 14: 795-825.DOI: 10.1029/1999GB001138 .
null
Kucharik C J Brye K R2003.Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer[J].Journal of Environmental Quality, 32: 247-268.DOI: 10.2134/jeq2003.2470 .
null
Lawrence D M Fisher R A Koven C D, et al, 2019.The Community Land Model Version 5: description of new features, benchmarking, and impact of forcing uncertainty[J].Journal of Advances in Modeling Earth Systems, 11: 4245-4287.DOI: 10. 1029/2018MS001583 .
null
Li Y Piao S L Li L Z X, et al, 2018.Divergent hydrological response to large-scale afforestation and vegetation greening in China[J].Science Advances, 4: eaar4182.DOI: 10.1126/sciadv.aar4182 .
null
Lombardozzi D L Lu Y Q Lawrence P J, et al, 2020.Simulating agriculture in the Community Land Model Version 5[J].Journal of Geophysical Research: Biogeosciences, 125.DOI: 10.1029/2019JG005529 .
null
Lu Y Q Kimball B A2020.Validation of spring wheat responses to elevated CO2, Irrigation, and nitrogen fertilization in the Community Land Model 4.5[J].Earth and Space Science, 7: e2020EA001088.DOI: 10.1029/2020EA001088 .
null
Lu Y Q Williams I N Bagley J E, et al, 2017.Representing winter wheat in the Community Land Model (version 4.5)[J].Geoscientific Model Development, 10: 1873-1888.DOI: 10.5194/gmd-10-1873-2017 .
null
Lu Y Q Yang X Y2021.Using the anomaly forcing Community Land Model (CLM 4.5) for crop yield projections[J].Geoscientific Model Development, 14: 1253-1265.DOI: 10.5194/gmd-14-1253-2021 .
null
Qiu L J Wu Y P Shi Z Y, et al, 2021.Quantifying spatiotemporal variations in soil moisture driven by vegetation restoration on the Loess Plateau of China[J].Journal of Hydrology, 600.DOI: 10.1016/j.jhydrol.2021.126580 .
null
Quinton J N Govers G Van Oost K, et al, 2010.The impact of agricultural soil erosion on biogeochemical cycling[J].Nature Geoscience, 3: 311-314.DOI: 10.1038/ngeo838 .
null
Rodell M Houser P R Jambor U, et al, 2004.The global land data assimilation system[J] Bulletin American Meteorological Society, 85, 381-394.DOI: 10.1175/BAMS-85-3-381 .
null
Van Oost K Quine T A Govers G, et al, 2007.The impact of agricultural soil erosion on the global carbon cycle[J].Science, 318: 626-629.DOI: 10.1126/science.1145724 .
null
Wang C H Yang K2018.A new scheme for considering soil water‐heat transport coupling based on Community Land Model: model description and preliminary validation[J].Journal of Advances in Modeling Earth Systems, 10: 927-950.DOI: 10.1002/2017MS001148 .
null
Wang D Y Wang D G Mo C X2021.The use of remote sensing-based ET estimates to improve global hydrological simulations in the Community Land Model Version 5.0[J].Remote Sensing, 13.DOI: 10.3390/rs13214460 .
null
Xia Y Fu C Wu H, et al, 2021.Influences of extreme events on water and carbon cycles of cropland ecosystems: a comprehensive exploration combining site and global modeling[J].Water Resources Research, 57: e2021WR029884.DOI: 10. 1029/2021WR029884
null
Yang K Wang C H Li S Y2018.Improved simulation of frozen‐thawing process in Land Surface Model (CLM4.5)[J].Journal of Geophysical Research: Atmospheres, 123.DOI: 10.1029/2017JD028260 .
null
Yang X Li Z Cui S, et al, 2020.Cropping system productivity and evapotranspiration in the semiarid Loess Plateau of China under future temperature and precipitation changes: An APSIM-based analysis of rotational vs.continuous systems[J].Agricultural Water Management, 229.DOI: 10.1016/j.agwat.2019.105959 .
null
Ye L P Fang L C Shi Z H, et al, 2019.Spatio-temporal dynamics of soil moisture driven by ‘Grain for Green’ program on the Loess Plateau, China[J].Agriculture, Ecosystems & Environment, 269: 204-214.DOI: 10.1016/j.agee.2018.10.006 .
null
陈海山, 杜新观, 孙悦, 2022.陆面过程与天气研究[J].地学前缘29(5): 382-400.DOI: 10.13745/j.esf.sf.2021.9.59 .
null
陈紫薇, 2021.覆膜对小麦-玉米轮作系统土壤水热、 作物生长和产量的影响[D].咸阳: 西北农林科技大学, DOI: 10.27409/d.cnki.gxbnu.2021.000605 .
null
戴永久, 2020.陆面过程模式研发中的问题[J].大气科学学报43(1): 33-38.DOI: 10.13878/j.cnki.dqkxxb.20200103006 .
null
李得勤, 张述文, 文小航, 等, 2016.土壤湿度参数化及对天气和气候模拟影响的研究进展[J].地球科学进展31(3): 236-247.DOI: 10.11867/j.issn.1001-8166.2016.03.236 .
null
李时越, 杨凯, 王澄海, 2018.陆面模式CLM4.5在青藏高原土壤冻融期的偏差特征及其原因[J].冰川冻土40(2): 322-334.DOI: 10.7522/j.issn.1000-0240.2018.0037 .
null
陆军胜, 2021.滴灌水肥一体化冬小麦/夏玉米水氮效应及夏玉米氮肥供应决策研究[D].咸阳: 西北农林科技大学, DOI: 10. 27409/d.cnki.gxbnu.2021.001906 .
null
邵进, 2019.黄土塬区深层土壤水文过程及其变化规律研究[D].咸阳: 西北农林科技大学.DOI: 10.27409/d.cnki.gxbnu. 2019.000045 .
null
孙昊蔚, 2020.气候变化下黄土高原作物产量与土壤水分模拟[D].咸阳: 西北农林科技大学, DOI: 10.27409/d.cnki.gxbnu. 2020.000933 .
null
王澄海, 杨凯, 张飞民, 等, 2021.青藏高原土壤冻融过程的气候效应: 进展和展望[J].高原气象40(6): 1318-1336.DOI: 10. 7522/j.issn.1000-0534.2021.zk021 .
null
王丹云, 吕世华, 韩博, 等, 2018.黄土高原春季植被变化分布与变化特征及其对春旱的响应研究[J].高原气象37(5): 1208-1219.DOI: 10.7522/j.issn.1000-0534.2018.00033 .
null
王菲, 陈报章, 陈婧, 等, 2022.华北平原冬小麦——夏玉米轮作区DLM与CLM5模型模拟对比研究[J].地理科学进展41(2): 289-303.DOI: 10.18306/dlkxjz.2022.02.009 .
null
王龙欢, 谢正辉, 贾炳浩, 等, 2021.陆面过程模式研究进展——以CAS-LSM为例[J].高原气象40(6): 1347-1363.DOI: 10. 7522/j.issn.1000-0534.2021.zk016 .
null
王宇轩, 奥银焕, 李照国, 等, 2021.黑河中下游不同类型下垫面的能量收支差异及其成因研究[J].高原气象40(3): 495-509.DOI: 10.7522/j.issn.1000-0534.2020.00100 .
null
吴笛, 胡泽勇, 付春伟, 等, 2022.基于CLM4.5的高寒草地辐射收支和水热交换的数值模拟研究[J].高原气象41(1): 107-121.DOI: 10.7522/j.issn.1000-0534.2021.00045 .
null
张宝庆, 邵蕊, 赵西宁, 等, 2020.大规模植被恢复对黄土高原生态水文过程的影响[J].应用基础与工程科学学报28(3): 594-606.DOI: 10.16058/j.issn.1005-0930.2020.03.008 .
null
张宝庆, 田磊, 赵西宁, 等, 2021.植被恢复对黄土高原局地降水的反馈效应研究[J].中国科学: 地球科学51(7): 1080-1091.DOI: 10.1360/SSTe-2020-0273 .
null
张强, 王蓉, 岳平, 等, 2017.复杂条件陆-气相互作用研究领域有关科学问题探讨[J].气象学报75(1): 39-56.DOI: 10. 11676/qxxb2017.003 .
文章导航

/