论文

农田和草地下垫面上附加阻尼kB-1变化特征的分析

  • 鞠英芹- ,
  • 徐自为 ,
  • 刘绍民 ,
  • 卢俐 ,
  • 徐同仁 ,
  • 刘寿东
展开
  • 北京师范大学 遥感科学国家重点实验室/地理学与遥感科学学院, 北京100875;2. 湖北省气象培训中心, 武汉430074;南京信息工程大学 应用气象学院, 南京210044;4. 北京市气象局气象信息中心, 北京100089

网络出版日期: 2014-02-28

Study on kB-1 on Farmland and Grass Underlying Surfaces

Expand

Online published: 2014-02-28

摘要

利用2010年阿柔站(草地)和馆陶站(农田)的观测资料, 运用阻尼法估算不同下垫面的热传输附加阻尼(kB-1), 分析日变化特征, 探讨用一个固定kB-1值来估算感热通量, 最后将估算值与M_1958、M_1963、M_1982、M_1989、M_1998、M_2002和M_2007七种参数化方案进行比较。结果表明, 在不同下垫面上, kB-1变化明显。除玉米下垫面、 玉米和裸地混合下垫面外, 其余下垫面kB-1均有抛物线型日变化, 与地气温差具有相关性。在植被下垫面, 可用中值或均值的kB-1计算感热通量。将不同参数化方案计算的感热通量与观测值之间进行比较发现, 在裸地下垫面, 与观测值最接近的参数化方案是M_1998方案; 在混合地表则为M_1958, M_1963和M_2007方案。

本文引用格式

鞠英芹- , 徐自为 , 刘绍民 , 卢俐 , 徐同仁 , 刘寿东 . 农田和草地下垫面上附加阻尼kB-1变化特征的分析[J]. 高原气象, 2014 , 33(1) : 55 -65 . DOI: 10.7522/j.issn.1000-0534.2013.00015

Abstract

Based on the data of Eddy Covariance (EC) system and Automatic Weather Station (AWS) collected at Guantao (farmland) and A’rou (grass) sites in 2010, the method of estimating  kB-1  is impedance method.The results have been used to analyze the daily variation characteristics of  kB-1  and to explore the possibility of using a fixed value to estimate sensible heat flux. And then, the estimates are compared with the values from the value of using seven parameterization schemes of M_1958, M_1963, M_1982, M_1989, M_1989, M_2002, and M_2007. The result shows that the values of  kB-1  have a obvious range on different underlying surfaces.kB-1 has a diurnal variation and also a good correlation with surface-air temperature difference, except maize and maize/bare soil. On the vegetation, the sensible heat flux is estimated with a median or mean value of  kB-1 . Comparing sensible heat flux using different parameterization schemes with the observed values, results of M_1998 are most close to the observe value on bare soil while in mixed terrain surface, M_1958, M_1963, and M_2007 are close to the observe value.

Key words: kB-1

参考文献

[1]Brutsaert W. Evaporation into the Atmosphere[M]. Dordrecht: D. Reidel Publishing Company, 1982: 352.
[2]Garratt J R. The atmospheric boundary layer[M]. Combridge: Cambridge University Press, 1992: 89.
[3]Owen P R, Thomson W R. Heat transfer across rough surfaces[J]. Journal of Fluid Mechanics, 1963, 15(3): 321-334.
[4]孙俊, 胡泽勇, 陈学龙, 等. 黑河中上游不同下垫面动量总体输送系数和地表粗糙度对比分析[J]. 高原气象, 2012, 31(4): 920-926.
[5]潘小多, 李新, 冉有华, 等. 下垫面对WRF模式模拟黑河流域区域气候精度影响研究[J]. 高原气象, 2012, 31(3): 657-667.
[6]张杰, 张强, 黄建平. 2007年5-10月黄土高原陆面能量通量特征研究[J]. 高原气象, 2007, 26(4): 855-863.
[7]Kustas W P, Choudhury B J, Moran M S, et al. Determination of sensible heat flux over sparse canopy using thermal infrared data[J]. Agricultural and Forest Meteorology, 1989, 44(3-4): 197-216.
[8]Sugita M, Brutsaert W. Regional surface fluxes from remotely sensed skin temperature and lower boundary measurement[J]. Water Resources Research, 1990, 26(12): 2937-2944.
[9]Stewart J B, Kustas W P, Humes K S, et al. Sensible heat flux-radiometric surface temperature relationship for eight semi-arid areas[J]. J Appl Meteor, 1994, 33(9): 1110-1117.
[10]Kohsiek W, De Bruin H A R, The H, et al. Estimation of the sensible heat flux of a semi-arid area using surface radiative temperature measurements[J]. Bound-Layer Meteor, 1993, 63(3): 213-230.
[11]Blyth E M, Dolman A J. The roughness length for heat of sparse vegetation[J]. J Appl Meteor, 1995, 34(2): 583-585.
[12]Troufleou D, Lhomme J P, Monteny B, et al. Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation I. An experimental analysis of the parameter[J]. J Hydrol, 1997, 188-189(1-4): 815-838.
[13]Lomme J P, Troufleau D, Monteny B, et al. Sendible heat flux and radiometric surface temperature over sparse Sahelian vegetation II. A model for the \%kB\%\+\{-1\} parameter[J]. J Hydrol, 1997, 188-189(1-4): 839-854.
[14]Verhoef W, De Bruin H A R, Van Den Hurk B J J M, et al. Some practical notes on the parameter for sparse vegetation[J]. J Appl Meteor, 1997, 36(5): 560-572.
[15]Sun J L. Diurnal variations of thermal roughness height over a grassland[J]. Bound-Layer Meteor, 1999, 92(3): 404-427.
[16]Ma Y M, Tsukamoto O, Wang J M, et al. Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau[J]. Progress in Natural Science, 2002, 12(1): 36-40.
[17]Yang K, Koike T, Yang D W. Surface flux parameterization in the Tibetan Plateau[J]. Bound-layer Meteor, 2003, 116(2): 245-262.
[18]Jia L. Modeling heat exchanges at the land-atmosphere interface using multi-angular thermal infrared measurements[D]. Wageningen University, 2004, ISBN 90-8504-041-8: 199.
[19]Yang K, Koike T, Ishikawa H, et al. Turbulent flux transfer over bare soil surfaces: Characteristics and parameterization[J]. J Appl Meteor Clim, 2008, 47(1): 276-290.
[20]Thom A S. Momentum, mass and heat exchange of plant communities[M]//Monteith J L, ed. Vegetation and the Atmosphere Principles. New York: Academic Press, 1975, 1: 57-109.
[21]Garratt J R, Hicks B B. Momentum, heat and water vapor transfer to and from natural and artificial surfaces[J]. Quart J Roy Meteor Soc, 1973, 99(422): 680-687.
[22]贾立, 王介民, 胡泽勇, 等. 干旱区热力学粗糙度特征及对感热通量估算的影响[J]. 高原气象, 2000, 19(4): 495-503.
[23]Sheppard P A. Transfer across the earth′s surface and through the air above[J]. Quart J Roy Meteor Soc, 1958, 84(361): 205-224.
[24]Zeng X B, Dickinson R E. Effect of surface sublayer on surface skin temperature and fluxes[J]. J Climate, 1998, 11(4): 537-550.
[25]Su Z B. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrol Earth Syst Sci, 2002, 6(1): 85-99.
[26]Yang K, Watanabe T, Koike T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget[J]. J Meteor Soc, 2007, 85: 229-242.
[27]Kanda M, Kanega M, Kawai T, et al. Roughness lengths for momentum and heat derived from outdoor urban scale models[J]. J Appl Meteor Climatol, 2007, 46(7): 1067-1079.
[28]李燕, 刘新, 李伟平. 青藏高原地区不同下垫面陆面过程的数值模拟研究[J]. 高原气象, 2012, 31(3): 581-591.
[29]胡文超, 张文煜, 张宇, 等. 河西走廊下垫面粗糙度实测值与模拟值的差异性分析[J]. 高原气象, 2010, 29(1): 51-55.
[30]Schotanus P, Nieuwstadt F T M, De Bruin H A R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes[J]. Bound-Layer Meteor, 1983, 26(1): 81-93.
[31]Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms[J]. Bound-Layer Meteor, 2001, 99(1): 127-150.
[32]Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quart J Roy Meteor Soc, 1980, 106(447): 85-100.
[33]Liu S M, Xu Z W, Zhu Z L, et al. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China[J]. J Hydrol, 2013, 487: 24-38.
[34]Lu L, Liu S M, Xu Z W, et al. The characteristics and parameterization of aerodynamic roughness length over heterogeneous surfaces[J]. Adv Atmos Sci, 2009, 26(1): 180-190.
[35]Foken T, Gckede M, Mauder M, et al. Post-field data quality control[M]//Lee X, Massman M, Law B, eds. Handbook of micrometeorology. A guide for surface flux measurement and analysis. Boston: KluwerAcademic, 2004: 181-208.
[36]李茂善, 杨耀先, 马耀明, 等. 纳木错(湖)地区湍流数据质量控制和湍流通量变化特征[J]. 高原气象, 2012, 31(4): 875-884.
[37]Paulson C A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer[J]. J Appl Meteor, 1970, 9(6): 857-861.
[38]Webb E K. Profile relationships: the log-linear range and extension to strong stability[J]. Quart J Roy Meteor Soc, 1970, 96(407): 67-90.
[39]Businger J A, Wyngaard J C, Izumi Y, et al. Flux profile relationships in the atmospheric surface layer[J]. J Atmos Sci, 1971, 28(2): 181-189.
[40]Liu S M, Lu L, Mao D F, et al. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements[J]. Hydrol Earth Syst Sci, 2007, 11(2): 769-783.
[41]Xu T R, Liu S M, Liang S L, et al. Improveing predictions of water and heat fluxes by assimilating MODIS land surface temperature products into common land model[J]. J Hydrometeor, 2011, 12(2): 227-244.
[42]Su Z B, Schmugge T, Kustas W P, et al. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere[J]. J Appl Meteor, 2001, 40(11): 1933-1951.
[43]Garratt J R, Francey R J. Bulk characteristics of heat transfer in the unstable baroclinic atmospheric boundary layer[J]. Bound-Layer Meteor, 1978, 15(4): 399-421.
[44]Massman W J. A model study of kBH-1 for vegetated surfaces using ‘localized near-field’ Lagrangian theory[J]. J Hydrol, 1999, 223(1): 27-43.
[45]Choudhury B J, Monteith J L. A four-layer model for the heat budget of homogeneous land surfaces[J]. Quart J Roy Meteor Soc, 1988, 11(480): 373-398.

/